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Abstract—To offset the high engineering cost of digital circuit
design, hardware engineers are looking increasingly toward high-
level languages such as C and C++ to implement their designs.
To do this, they employ High-Level Synthesis (HLS) tools that
translate their high-level specifications down to a hardware
description language such as Verilog. Unfortunately, HLS tools
themselves employ sophisticated optimization passes that may
have bugs that silently introduce errors in realized hardware. The
cost of such errors is high, as hardware is costly or impossible
to repair if software patching is not an option. In this work,
we present a translation validation approach for verifying the
correctness of the HLS translation process. Given an initial C pro-
gram and the generated Verilog code, our approach establishes
their equivalence without relying on any intermediate results or
representations produced by the HLS tool. We implemented our
approach in a tool called VTV that is able to validate a body of
programs compiled by the Xilinx Vivado HLS compiler.

I. INTRODUCTION

To offset the high cost of digital circuit design, hard-
ware engineers are increasingly employing general purpose
programming languages like C or C++ to implement their
designs. In a process known as high-level synthesis (HLS),
the hardware designer implements desired functionality in a
high-level language. An HLS tool then translates this high-
level program into a hardware description language such as
Verilog. HLS has been a topic of research for the past two
decades [1], [2], [3], and the technology has matured to
the point that commercial tools are becoming increasingly
available. Examples include the Xilinx Vivado HLS compiler,
the Synopsis Synphony C compiler, and the Bluespec compiler.

Unfortunately, HLS compilers are complex tools, akin to
compilers, and it is well known that compilers are notoriously
difficult to make reliable. For example, a study by Yang
et al. [4] found hundreds of previously unknown bugs in
mature, well-tested, and broadly used compilers. Errors in HLS
compilation are very costly: once manufactured, hardware is
expensive to repair, if even possible.

One well-known way of increasing the reliability of com-
pilers is a technique called translation validation [5], [6].
Translation validation works as follows: on each run of the
compiler, a separate tool tries to prove that the input program is
semantically equivalent to the corresponding output program.
Since HLS tools are in essence compilers, it is natural to apply
translation validation techniques to them, or more broadly
compiler verification techniques. Although there is previous
work in this space [7], [8], [9], there is no previous approach
which simultaneously: (1) performs automated validation of
the entire C-to-Verilog translation from source to source, (2)
works in a blackbox setting, where only the Verilog program
and no other output is taken from the compiler, and (3) works

in the setting of a realistic industrial strength HLS compiler.
In this paper, we present an approach with all three benefits.

In our approach, we first convert both the C program and
the Verilog program into a common intermediate representa-
tion (IR), then use bisimulation techniques to prove the two
resulting IR programs equivalent. The main technical challenge
lies in translating the naturally concurrent and unstructured
Verilog code into a structured transition diagram amenable to
bisimulation. Other technical challenges include the handling
of low-level protocols for memory operations and termination.

To demonstrate the viability of our approach, we have
implemented a tool called VTV that has verified translation of
17 benchmarks compiled by the Xilinx Vivado HLS compiler,
with an average of 300 seconds per benchmark.

The rest of this paper is organized as follows: Section II
introduces the Verilog language and motivates the equivalence
checking problem. Section III presents a formal account of
UIR diagrams, the intermediate representation we derive for
both Verilog and C programs. Section IV covers the algorithms
for translating Verilog and C programs to UIR diagrams. Sec-
tions V and VI cover the equivalence checking and inference
algorithms. Section VII presents our experimental evaluation.

II. OVERVIEW

We present an overview of our approach through a simple
example. Consider the following C function and its resulting
Verilog module declaration, generated by the Vivado HLS
Compiler. This example code computes the 32-bit CRC check-
sum of the input string buf.

// C implementation
ulong crc32(ulong crc, uchar buf[1024], ulong off, ulong len, ulong crc_table[256]){

crc = crc ˆ 0xffffffffL;
unsigned int i;
for (i=0; i<len; i++) crc = crc_table[(crc ˆ buf[off + i]) & 0xff] ˆ (crc >> 8);
return crc ˆ 0xffffffffL;

}
// Verilog module declaration
module crc32

(clk, rst, start, done, idle, ready, crc, buf_address0, buf_ce0, buf_q0, off,
len, crc_table_address0, crc_table_ce0, crc_table_q0, return);

Verilog contains types corresponding to the basic elements
of hardware: 1) ports and wires, which just like their physical
analogues do not hold state, but propagate values, and 2) reg-
isters, which hold their previously assigned values. Registers
can store both data and control (for example the current state
of the state machine), but there is no distinction between the
two in the language itself.

Modules encapsulate logic and roughly correspond to
discrete components in a hierarchical design: the commu-
nication between modules and their environment occurs
through their declared ports. In the case of crc32, the
ports include: 1) input arguments crc, off, len; 2)



// clocked always block
always @ (posedge clk) begin
if ((2’b10 == CS)) begin i_reg <= i_reg_2; end
else if (((2’b0 == CS) &˜(start == 1’b0))) begin i_reg <= 3’b0; end

end

// unclocked always block
always @ (CS or exitcond) begin
if (((2’b1 == CS) & (exitcond == 1’b0))) begin buf_ce0 = 1’b1; end
else begin buf_ce0 = 1’b0; end

end

// continuous assignments
assign i_wire = (i_reg + 3’b1);
assign exitcond = (i_reg == len ? 1’b1 : 1’b0);

Fig. 1: Verilog Constructs. CS holds the current FSM state.

an output value return; 3) miscellaneous control sig-
nals such as clk, rst, start, done; and 4) a memory
interface consisting of inputs buf_q0, crc_table_q0,
and outputs buf_ce0, buf_address0, crc_table_ce0,
crc_table_address0.

Salient fragments of the Verilog code for crc32 are shown
in Figure 1. The actual logic of the module is implemented
using two constructs: always blocks and continuous assign-
ments. The top of Figure 1 shows an always block that
updates the register i_reg, which corresponds to the loop
induction variable i in the C program. The semantics of
always blocks is such that the body of the block executes
whenever a value in its sensitivity list, enclosed in @(), is
updated. Stateful register updates occur in always blocks
sensitized only on posedge clk, the positive edge of the
clock signal. We call such blocks clocked always blocks.
The second block in Figure 1 is an always block of a slightly
different form. This block sets port buf_ce0 to 1 in state 1
when exitcond is 0, which encodes the fact that we read
from the buf array in the body of the loop. The sensitivity
list contains precisely those identifiers read within the body,
and the conditionals within the body are exhaustive. Blocks
of this kind, which we called unclocked always blocks,
implement combinational circuits with no internal state. The
final construct to note, the continuous assignment, appears on
the last two lines of Figure 1. Continuous assignments are
an alternate syntax for combinational logic. They update their
left-hand sides whenever the right-hand side changes.

Challenges. There are two key challenges to developing
a translation validator between C and HLS-derived Verilog
programs. The first challenge is to resolve the impedance
mismatch between the low-level nature of the Verilog pro-
gram, which conceptually conflates control and data state,
and the high-level nature of C specifications which make
obvious the distinction via structured control flow (loops and
branches). The control flow of a typical Verilog program is
spread throughout the program in various clocked always
blocks: the simple act of updating the loop index in crc32
is implemented across two clocked always blocks and a
continuous assignment, and this does not even account for
the actual computation of the body of the loop. Complicating
matters further, the Verilog implementation makes use of
various hardware-specific protocols that must be lifted to a
higher representation to ease the burden of reasoning about
program behavior. For instance, where the C program has an
array access such as buf[off + i], the Verilog program
obeys a protocol in which an enable and address are provided
in one cycle before the load value is read in the next cycle.
As a result, reasoning about memory equality requires us to

soundly detect loads and stores according to this protocol.

The second challenge is to infer the invariants necessary for
establishing equivalence between the Verilog and C programs
in the face of optimizations. For instance, the HLS compiler
optimized the value of the loop exit condition exitcond from
i < len to i == len. It did so by inferring the program
invariant i ≤ len, which together with the loop exit condi-
tion i ≥ len implies i == len. Our translation validator
must therefore be able to infer such additional invariants to
effectively prove program equivalence.

Our Approach. We apply two insights to address these
challenges. The first insight is that the structure of HLS-derived
Verilog is highly constrained and amenable to inexpensive
syntactic reasoning. Particularly, the predicates occurring in
conditionals are likely to be conditions under which finite state
machine (FSM) transitions occur, so we extract them using a
semantics preserving rewrite system. With the predicates ex-
tracted, we then employ an automated theorem prover to derive
the static transition relation with respect to those predicates,
essentially rederiving the underlying FSM implicitly defined
by the Verilog specification. Proving equivalence between the
extracted diagram and the original C control flow graph then
reduces to the well-known problem of finding a bisimulation
relation [10] that relates the states of both programs at key
locations using logical formulae (invariants) over those states.

Our second insight, akin to [11], is to employ statistical
invariant inference to guess the required invariants from a rich
constraint language, and then to check that these invariants in
fact hold. In particular, we build on the Daikon tool [12], which
uses machine learning to guess likely invariants from execution
traces. We adapt Daikon to the context of two programs
by presenting pairs of traces, and achieve soundness with a
checking algorithm that retains only provably valid invariants.

III. UNIFIED INTERMEDIATE REPRESENTATION

In this section we formally define our underlying program
representation. We use a generalized form of control flow
graph called a UIR diagram to model both C and Verilog
programs. We define a UIR state σ ∈ Σ to be a map
Vars → Vals from variables to their values, where Σ is the
set of all states.

Definition 1 (UIR Diagram): A UIR diagram π is a tuple
(L,M, E, s, φ,F, J·K), where

1) L is a finite set of labels,
2) M : L → [O] is a map from labels to sequences of

operations,
3) E ⊆ (L × (Σ→ B)× L) is a finite set of tuples (l, p, l′)

called transitions where l, l′ are labels and p is a state
predicate,

4) s ∈ L is a designated start label,
5) F ⊆ L is a (possibly empty) set of final labels,
6) φ : Σ→ B is a state predicate, and
7) J·K : O → (Σ → Σ) is a map from operations to their

corresponding state transformation functions.

The predicate φ defines the set of valid initial states for
the program. In practice, φ is a manually-specified well-
formedness condition on inputs to the program. Note that
UIR diagrams are parametric in an underlying semantics of



operations and expressions via J·K. This is vital for building
equivalence proofs between C and Verilog programs, as we
assume either semantic function J·Kc or J·Kv for UIR diagrams
derived from C or Verilog, respectively.

Definition 2 (Semantic Step): Given UIR diagram π =
(L,M, E, s, φ,F, J·K), a configuration is a pair 〈l, σ〉 where
l ∈ L and σ ∈ Σ. We define the semantic step relation on
configurations as follows: 〈l, σ〉 ↪→ 〈l′, σ′〉 ⇐⇒

∃p. (l, p, l′) ∈ E ∧ p(σ′) ∧ σ′ = JM(l)K(σ)

where J·K denotes J·K lifted to sequences via function compo-
sition.

Definition 3 (Trace): A trace of a UIR diagram is a finite
sequence of configurations τ = 〈l0, σ0〉, ..., 〈ln, σn〉 such that
l0 = s, φ(σ0) = true , and 〈lk, σk〉 ↪→ 〈lk+1, σk+1〉 for all
0 ≤ k < n. We denote the set of all traces of π by ηπ .

We define ↪−→+ to be the relation such that
〈l, σ〉↪−→+〈l′, σ′〉 iff 〈l, σ〉 ↪→ . . . ↪→ 〈l′, σ′〉. Informally,
↪−→+ relates pairs of configurations at least one step apart.

Definition 4 (Relative Equivalence of Traces): Given
predicates Φ,Φ′ : Σ× Σ→ B on pairs of states, we say that
two traces τ1, τ2 with initial states σ1, σ2 and final states
σ′1, σ

′
2, respectively, are relatively equivalent with respect to

predicates Φ,Φ′ iff Φ(σ1, σ2) ∧ Φ′(σ′1, σ
′
2), which we denote

τ1 ≡Φ
Φ′ τ2.

Predicates Φ,Φ′ define mappings from variables in one
trace to their equivalents in the other trace via equality
constraints of the form u = v, where u ∈ dom(Σ1) and
v ∈ dom(Σ2). Together, the equality constraints of Φ define
the set of variables whose values must be equal at the begin-
ning of execution (inputs), and Φ′ define the set of variables
whose values must be equal at termination (return values and
persistent memory). We call Φ a relational precondition and Φ′

a relational postcondition. In practice, we use these relational
pre- and postconditions to establish expected equalities be-
tween visible variables (such as inputs, outputs, and persistent
arrays), at program entry and exit.

IV. TRANSLATION TO UIR

In this section we describe a minimal fragment of Verilog
called μVerilog, then describe an algorithm for normalizing and
converting μVerilog to UIR diagrams. The syntax of μVerilog
programs is a small subset of Verilog syntax, consisting of only
the following constructs: module declarations; input, output,
wire, and register types; always blocks; nonblocking, blocking,
and continuous assignments; and arithmetic and logical expres-
sions. Figure 2 shows the skeleton of a normalized μVerilog
program, where nba and ca are nonblocking and continuous
assignment, respectively, and we have used the notation x as
shorthand for 0 or more repetitions of x.

Normalization. We normalize μVerilog using a system of
7 rewrite rules, which we describe here. These rules reduce
a μVerilog program to a simple syntactic form such that
we can extract its control-flow predicates. MERGE-ALWAYS
combines the bodies of two clocked always blocks. Repeated
application eventually reduces all clocked always blocks
into one. MERGE-IFS combines two if-else chains within

module decl
always @(posedge clk)

if(e1) nba1
else if(e2) nba2
else if(e3) nba3
. . .

else nban
ca

do
e1 → adjoin(conc(nba1), ca)

¬e1 ∧ e2 → adjoin(conc(nba2), ca)

¬e1 ∧ ¬e2 ∧ e3 → adjoin(conc(nba3), ca)
. . .

¬e1 ∧ . . . ∧ ¬en−1 → adjoin(conc(nban), ca)

Fig. 2: Normalized μVerilog (left) and μGCL (right)

a clocked always block into a single chain by exhaustive
case analysis. FLATTEN-IFS combines two nested if-else
constructs within a clocked always block into a single chain
by exhaustive case analysis. PRUNE-F and PRUNE-T prune un-
reachable branches. NEST pushes assignments within a clocked
always block into the body of all neighboring if-else
chains. REDUCE-ASSN converts unclocked always blocks
into continuous assignments.

The form of a normalized μVerilog program is shown at left
in Figure 2: a single clocked always block followed only by
0 or more continuous assignments. The program contains no
unclocked always blocks due to applications of rewrite rule
REDUCE-ASSN. Additionally, the body of the single always
block is a single if-else chain with no nested conditionals.

After rewriting as described, the single if-else chain
would contain only predicates from within clocked always
blocks. To consider relevant predicates from other parts of the
program, we collect predicates referencing the CS register and
introduce them in empty clocked statements prior to rewriting.

Guarded Commands. We then convert the resulting nor-
malized μVerilog program to a restricted, deterministic variant
of Dijkstra’s guarded command language [13] (μGCL). A
μGCL program consists of a single do repetition with one
or more mutually exclusively guarded commands, where each
guarded command is a pair of a predicate and a sequence
of assignments. μGCL shares the same syntax and semantics
of expressions as μVerilog, but has only one operation: con-
current assignments of the form v1, v2, ..., vn = e1, e2, ..., en,
abbreviated v = e, that atomically update each v ∈ v with
its respective element of e. Exactly one guarded command
is available for execution during any iteration. The restricted
structure of normalized μVerilog allows translation to μGCL to
proceed in a purely syntactic way. Continuous assignments are
always active, so we model them in μGCL by both appending
and prepending them to each guarded command in topological
order (to preserve dependency order). Figure 2 shows the
result of converting the normalized μVerilog at left to the
μGCL at right, where conc converts a sequence of assignments
to a single concurrent assignment, and adjoin performs the
aforementioned operation on continuous assignments.

Given a μGCL program as a set of guarded commands G,
we now wish to produce an equivalent UIR diagram. Intuitively,
translation proceeds by determining the set of possible transi-
tions between guarded commands, which we encode as a static
reachability relation among the set of guarded commands.

Definition 5 (μGCL Static Command Reachability): A
static command reachability relation R on guarded commands
G is the set of all pairs (g = p → a, g′ = p′ → a′) ∈ G×G
such that ∃ σ. p(σ) ∧ p′(JaKv(σ)).

The static command reachability relation R overapproxi-



mates the set of possible transitions between guarded com-
mands in G. Given R, we then construct the corresponding
UIR diagram π = (L,M, E, s, φ,F, J·K) as follows:

1) The body of each guarded command p → a receives a
fresh label l such that l ∈ L and M(l) = a.

2) For each (p→a, p′→a′) ∈ R, let l, l′ be the correspond-
ing labels defined in Step 1. Add (l, p′, l′) to E .

3) Compute the reset state σreset by performing a concrete
execution of the μGCL in which rst is asserted to 1.
Create a fresh label ls such that s = ls and M(ls) =
init(σreset) where init(σreset) simply initializes variables
to their reset values. Let S be the set of all guarded
commands p → a such that p(σreset) holds. If |S| = 1
then add tuple (ls, true, l) to E where l is the single
element of S. If |S| 6= 1 then fail.

4) φ = true and F = ∅.
5) J·K = J·Kv where J·Kv defines the state transformation

semantics of μVerilog assignments and expressions.

Extraneous Control. At this point the diagram still con-
tains extraneous control variables such as rst that represent
hardware specific functionality with no analogue in the C spec-
ification. To extract only functionality enabled under normal
operating conditions, we globally constrain the variables rst
and start to constants 0 and 1, respectively, when computing
the μGCL static command reachability relation.

Memory Operations. Another challenge is that memory
operations still occur as low-level port assignments to enable
and address wires, which we wish to lift to operations of the
form load(addr ,mem) and store(addr , value,mem).

Let π = (L,M, E, s, φ,F, J·K) be the UIR diagram. We
first determine the set of arrays referenced by detecting groups
of variables of the form arr ce0, arr address0, and arr q0,
where arr is the array name. Then, for every pair of labels
l, l′ ∈ E we define two logical formulas:

Tl,l′=∃ σ, σ′. P→l(σ)∧〈l, σ〉 ↪→ 〈l′, σ′〉∧(σ′(arr ce0) = 1)
Fl,l′=∃ σ, σ′. P→l(σ)∧〈l, σ〉 ↪→ 〈l′, σ′〉∧(σ′(arr ce0) = 0)

where P→l is the disjunction of all predicates on incoming
edges to l. Intuitively, Tl,l′ holds if there exists a trace with
step from from label l to label l′ along which the read enable
signal arr ce0 has value 1, and Fl,l′ holds if there exists
a trace with step from from label l to label l′ along which
the read enable signal arr ce0 has value 0. If Tl,l′ holds,
then we insert a new label lT with an operation assigning
arr_q0 to the loaded value. The incoming edge predicate to lT
correspondingly receives the additional conjunct arr ce0 = 1
such that this transition is followed only in the case that the
read occurs. Analogously, if Fl,l′ holds then we insert a new
label lF with an assignment operation that assigns port arr_q0
with an unknown value (we model unknown values in SMT
queries with unconstrained fresh variables). In other words,
if arr ce0 = 0 then no load occurs, and the value on the
memory read port is undefined. Lifting store operations is
conceptually the same, so we omit the details here.

Exit Labels. At this point, there is still no exit label in
the diagram: whereas the C specification contains an explicit
return statement, the FSM simply transitions back to the
start state at termination. We simply detect such transitions
and reroute them to a distinguished exit label instead.

C to UIR. Translation from C to UIR is straightforward, as
a UIR diagram is just a generalized form of control flow graph.
We use LLVM [14] to generate an unoptimized control flow
graph for the C program, which we encode as a UIR diagram
in which labels are basic blocks, transitions are control flow
edges, and the start and exit labels are entry and exit nodes,
respectively. Crucially, due to the differing semantics of LLVM
and Verilog expressions, in this case J·K = J·Kc which defines
the state transformation semantics of LLVM instructions.

V. BISIMULATION RELATIONS

With UIR diagrams for both the C specification and Verilog
implementation in hand, we can now describe our strategy for
constructing equivalence proofs. Our equivalence proofs will
take the form of bisimulation relations.

We say that two UIR diagrams are compatible iff they
have the same input variables, return variables, and array
variables. Given compatible diagrams π1 and π2, we de-
fine Ψ(π1, π2)(σ1, σ2) to be true iff the values of input
and array variables are pair-wise equal in σ1 and σ2; and
Ψ′(π1, π2)(σ1, σ2) to be true iff the values of array and return
variables are pair-wise equal in σ1 and σ2. Ψ and Ψ′ are the
pre- and post-conditions of our verification.

Definition 6 (Equivalence of UIR Diagrams): Two com-
patible π1 and π2 are equivalent, written π1 ≡ π2, iff (where
Φ = Ψ(π1, π2) and Φ′ = Ψ′(π1, π2))

(∀ τ1 ∈ ηπ1
∃ τ2 ∈ ηπ2

. τ1 ≡Φ
Φ′ τ2)∧

(∀ τ2 ∈ ηπ2∃ τ1 ∈ ηπ1 . τ1 ≡Φ
Φ′ τ2)

Definition 7 (Correlation Relation): A correlation relation
R for UIR diagrams π1 = (L1,M1, E1, s1, φ1,F1, J·K1) and
π2 = (L2,M2, E2, s2, φ2,F2, J·K2) is a set of tuples (l1, l2, ψ)
called cutpoints, such that l1 ∈ L1, l2 ∈ L2, and ψ : Σ1 ×
Σ2 → B is a predicate relating the states of π1 and π2.

Definition 8 (Simulation Relation): Given compatible UIR
diagrams π1 = (L1,M1, E1, s1, φ1,F1, J·K1) and π2 =
(L2,M2, E2, s2, φ2,F2, J·K2), a simulation relation for π1, π2

is a correlation relation R for π1, π2 such that:

1) (s1, s2, φpre) ∈ R where
φpre(σ1, σ2) = Ψ(π1, π2)(σ1, σ2) ∧ φ1(σ1) ∧ φ2(σ2)

2) ∀ (f1, f2) ∈ F1 ×F2. (f1, f2,Ψ
′(π1, π2)) ∈ R

3) ∀ l1, l′1, l2, σ1, σ
′
1, σ2, φ.

(l1, l2, φ) ∈ R ∧ 〈l1, σ1〉
R

↪−→+
1 〈l′1, σ′1〉 ∧ φ(σ1, σ2)

=⇒ ∃ l′2, σ′2, φ′.
(l′1, l

′
2, φ
′) ∈ R ∧ 〈l2, σ2〉

R
↪−→+

2 〈l′2, σ′2〉 ∧ φ′(σ′1, σ′2)

where
R

↪−→+
1 ,

R
↪−→+

2 are ↪−→+
1 , ↪−→

+
2 restricted to labels oc-

curring in R, respectively.

Definition 9 (Bisimulation Relation): A bisimulation rela-
tion for π1, π2 is a correlation relation R for π1, π2 such that
R is a simulation relation for π1, π2 and R−1 is a simulation
relation for π2, π1, whereR−1 = {(l2, l1, φ) | (l1, l2, φ) ∈ R}.

Theorem 1: If there exists a bisimulation relation for
π1, π2, then π1 ≡ π2.

A bisimulation relation is a witness that two UIR diagrams
are equivalent: the requirements of Definition 8 can be checked
mechanically using an automated theorem prover.



VI. INFERRING BISIMULATION RELATIONS

Our approach to bisimulation inference uses two mutually
dependent techniques: (1) static exploration of the UIR dia-
grams in lock-step to infer the location of cutpoints, and (2)
invocation of Daikon [12] to infer invariants at these cutpoints.

Daikon. Daikon is a tool that infers likely invariants from
dynamic traces of execution: by running the program on a
variety of inputs, Daikon collects traces of the values that occur
at run-time, and then uses statistical techniques to infer likely
invariants over variables in the program at certain program
locations. We adapt this technique to pairs of programs by
executing both programs on several test cases and collecting
their observed run-time values (each test case produces one
trace per program). We align and merge these traces, then run
Daikon on the merged traces to produce likely invariants. We
encapsulate this entire process in function daikon(l1, l2), which
returns the set of invariants that Daikon infers for the aligned
pair of program locations l1 and l2.

Algorithm. Our algorithm tries to find an inferred relation:

Definition 10 (Inferred Relation): An inferred relation is a
simulation relation R with two additional properties:

1) For each (l1, l2, φ) ∈ R, φ is a conjunction of a subset of
the invariants in daikon(l1, l2).

2) For each (l1, l2, φ) ∈ R, if there exists (l′1, l
′
2, φ
′) ∈ R

such that a static path exists from l1 to l′1 and from l2 to l′2,
then that path is either finite or crosses another cutpoint.

Property 2 above makes automatic checking tractable: we
reduce checking requirement 3 of Definition 8 to validity
checks along only a finite set of pairs of loop-free paths.

Our algorithm starts with a relation R with cutpoints only
for the entry and exits of π1 and π2, with the invariants
described in requirements 1 and 2 of Definition 8. In practice,
the entry point invariant states that both programs start with
equal inputs and memory, and the exit point invariant asserts
that upon termination they have the same output and memory.
We then iteratively refineR using the following two steps, until
either a fixed point is reached (in which case R is the inferred
bisimulation relation), or an unfixable violation is found:

1) From an existing cutpoint (l1, l2, φ) ∈ R, traverse π1 and
π2 in lock-step (while pruning out pairs of infeasible paths
given precondition φ) until one of three conditions occurs:
a) We hit an existing cutpoint (l′1, l

′
2, φ
′) ∈ R.

b) We find a pair of paths that both loop on themselves,
in which case we must add a new cutpoint (l′1, l

′
2, φ
′)

toR to cut through both loops (i.e. maintain condition
2 in Definition 10). We set φ′ to daikon(l′1, l

′
2).

c) We find a pair of paths that don’t have matched
continuations (e.g. one path loops, while the other
reaches exit). In this case we fail.

2) Regardless of which of (a) or (b) we came from, we have
(l1, l2, φ) ∈ R and (l′1, l

′
2, φ
′) ∈ R. We use the SMT

solver Z3 [15] to check whether the source cutpoint’s
invariant φ is sufficient to establish the target cutpoint’s
invariant φ′. (i.e. whether requirement 3 of Definition 8
holds). If a violation is found then either:
d) (l′1, l

′
2) are final labels, in which case we cannot

find an inferred relation – the Daikon invariants are

Benchmark C V U B
arrayIncrement 7 187 10 6
sumArray 7 155 9 9
vectorAdd 7 235 10 6
scalarProduct 9 199 10 10
crc32 9 211 10 8
crossProduct 10 290 18 37
yuv2rgba 10 452 21 48
popCount 10 143 8 13
matrixAdd 11 276 13 23

Benchmark C V U B
min 12 170 9 9
mvMul 13 287 36 38
waveletTransform 13 377 20 58
mmMul 17 377 28 80
fletcher32 19 336 18 46
gsm_logarea 20 233 12 16
walshHadamard 22 440 38 207
sha1 34 1157 296 476

Fig. 3: Results. C=lines of C, V=lines of Verilog, U=time to
generate UIR (s), B=time to infer bisimulation (s)

not strong enough to prove the post-condition or the
programs are not equivalent.

e) (l′1, l
′
2) are not final labels, in which case we weaken

φ′ by removing the Daikon invariants from φ′ that Z3
cannot prove.

The above process must terminate because there are a finite
number of possible candidate cutpoints to consider, and for
each of them, we start from a finite set of invariants (provided
by Daikon) and iteratively prune down.

VII. EVALUATION

We implemented our approach in a tool called VTV, which
consists of about 12.5K lines of Scala code. The underlying
SMT solver is Z3.

We evaluated VTV on a variety of benchmarks from
domains including linear algebra, cryptography, and image
processing [16], [17], [18], each of which consists of a single C
function. We compiled each function using the Xilinx Vivado
HLS compiler into Verilog code, and then asked VTV to
check the equivalence of the original C code and the resulting
Verilog code. The only other inputs were the test inputs used
by our tool to generate dynamic traces for Daikon, and well-
formedness constraints on inputs when necessary. For each
benchmark, very few (3-5) test inputs were needed for Daikon
to infer sufficient invariants, and in almost all cases writing
the inputs required no intuition about the program. Figure 3
shows our results. VTV was able to verify all benchmarks.
Experiments were performed on a machine with an Intel Core
i7-4510U CPU with 8GB RAM.

The verification time is dominated by two components,
both shown in Figure 3: (1) the time to generate the UIR and
(2) the time to infer the bisimulation relation, including the
time to collect traces and run Daikon. Although in theory the
UIR generation algorithm described in Section IV can produce
a UIR diagram of size exponential in the number of Verilog
conditionals, in practice this does not occur because most
derived predicates are unsatisfiable (e.g., CS = 0 ∧ CS = 1)
and pruned via rewrite rules PRUNE-F and PRUNE-T.

Upon examining the UIR diagrams proven equivalent, we
found several examples of non-trivial optimizations that had
been performed, including: constant propagation and folding,
basic block coalescing (combining basic blocks to make loop
logic contain less jumps), loop-invariant code motion (hoisting
invariant computations outside of a loop), branch hoisting
(short circuting loop execution with an additional branch),
branch folding (removing branches whose branch condition
can be statically computed), and redundant load elimination.

Limitations. As with many other translation validation
approaches [19], VTV does not currently handle aggressive



optimizations that significantly alter control-flow structure (e.g.
loop splitting and pipelining). In all benchmarks, no such
optimizations occurred. However, to extend VTV to handle
such optimizations in the future, we aim to leverage existing
work that has attacked the problem from the context of
software compilation [20], [19], [21]. Our approach currently
works on a single function at a time. By default, Vivado
compiles functions into separate modules. This lends itself
to a clear strategy for extending our approach to multiple-
function programs: treat each submodule interaction as a
function call. The construction of bisimulation relations for
the interprocedural context has been demonstrated by previous
work, such as that of Pnueli and Zaks [22].

VIII. RELATED WORK

Translation Validation. Although inspired by previous
work on translation validation [5], [6], [7], [10], our approach
does not employ classical techniques such as weakest precon-
ditions to infer invariants, but instead uses statistical infer-
ence [12]. Thus, our approach is conceptually similar to work
on nullspace invariant inference for program equivalence [11],
which is also heuristic in nature but is limited to inferring
equality constraints (which our approach is not).

HLS Verification. Bisimulation-based equivalence check-
ing has been previously applied to the validation of scheduling
in HLS tools [7], [23], [8], [24], [25]. These approaches
assume the availability of a convenient intermediate represen-
tation such as CSP processes [23], CFGs [7], or FSMDs [8],
[24], [25]. A key contribution of our work is a technique
for equivalence-checking in the absence of such tool-provided
intermediate representations. Kroening and Clarke [26] use
bounded model-checking to find inconsistencies between a
C program and Verilog implementation, but does not prove
equivalence unless the bound can be shown exhaustive.

Replay-based equivalence checking [27], [28], [29] checks
equivalence of C code and its translation by mimicking the
optimizations performed by HLS, but via a certified reference
flow. This approach can verify aggressive optimizations like
loop pipelining [29], but relies on intermediate results to re-
construct optimizations, which our approach does not require.

Finally, DFG-based equivalence checking first converts
programs to dataflow graphs [30] before checking their equiv-
alence [31]. To handle loops, their technique uses explicit
unrolling and thus only handles statically bounded loops. Our
technique does not have this limitation due to UIR’s ability to
encode cyclical control flow.

IX. CONCLUSION

We have presented an approach for translation validation of
HLS. Our approach establishes the equivalence of a C program
and a Verilog program without requiring any intermediate
results from the HLS tool. Moving forward, we intend to scale
VTV to even larger programs by adding a modular analysis
for handling multi-module implementations.
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