
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Constructing Parsers by Example via Interactive Program Synthesis

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Alan Leung

Committee in charge:

Professor Sorin Lerner, Chair
Professor Samuel Buss
Professor Ranjit Jhala
Professor Ryan Kastner
Professor Todd Millstein

2017

Copyright

Alan Leung, 2017

All rights reserved.

The Dissertation of Alan Leung is approved and is acceptable in quality

and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2017

iii

DEDICATION

To my loving wife and family.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . xi

Acknowledgements . xii

Vita . xv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Outline of this work . 4
1.2 Organization . 5
1.3 Acknowledgements . 6

Chapter 2 Preliminaries . 7
2.1 Lexical Analysis . 7

2.1.1 Regular Expressions . 7
2.1.2 Lexers . 7

2.2 Context-Free Grammars . 8
2.2.1 String Indexing . 9
2.2.2 Derivations . 10
2.2.3 Sentential Forms . 10
2.2.4 Parse Trees . 10
2.2.5 Parsers . 12

2.3 Disambiguating Filters . 12
2.3.1 Associativity Filters . 13
2.3.2 Priority Filters . 14
2.3.3 Consistency . 15
2.3.4 Filter Specification Syntax . 15

2.4 Acknowledgements . 16

Chapter 3 Parsify . 18
3.1 Overview . 19

3.1.1 User Interface Overview . 20
3.1.2 Basic Inference . 20

v

3.1.3 Infix Expressions . 22
3.1.4 Function Definitions . 24
3.1.5 Function Calls . 25
3.1.6 Challenges . 26

3.2 Algorithm . 27
3.2.1 Session State . 27
3.2.2 Operations . 28
3.2.3 Draw . 29
3.2.4 Negate . 31
3.2.5 Annotate . 32
3.2.6 Generalize . 33
3.2.7 Resolve . 36

3.3 Evaluation . 40
3.3.1 Versatility . 42
3.3.2 Usability . 43
3.3.3 Best Practices . 44

3.4 Acknowledgements . 46

Chapter 4 Parsimony . 47
4.1 Overview . 50

4.1.1 Constructing the Lexer . 52
4.1.2 Constructing the Parser . 56

4.2 Lexer Synthesis . 60
4.2.1 A Data Structure for Sets of Regular Expressions 60
4.2.2 Regular Expression Inference via R-DAG Queries 62
4.2.3 Example of Token Inference . 65

4.3 Parser Synthesis . 67
4.3.1 Preliminaries: CYK Parsing Algorithm . 68
4.3.2 Parser Synthesis Constraint Systems . 69
4.3.3 A Data Structure for Sets of Candidate Productions 70
4.3.4 Parser Synthesis via CYK Automata . 72

4.4 Implementation . 91
4.4.1 Backend Design . 92
4.4.2 Frontend Design . 93

4.5 Evaluation . 93
4.5.1 Hypotheses . 94
4.5.2 Participants . 94
4.5.3 Interface Differences . 94
4.5.4 Methodology . 95
4.5.5 Quantitative Results . 96
4.5.6 Qualitative Results . 101

4.6 Acknowledgements . 104

vi

Chapter 5 Related Work . 105
5.1 Program Synthesis . 105
5.2 Grammatical Inference . 107
5.3 Parsing . 108
5.4 Acknowledgements . 109

Chapter 6 Conclusion . 110

Appendix A CYK-based Coloring . 112

Appendix B Additional Patterns and Schemas . 115

Bibliography . 117

vii

LIST OF FIGURES

Figure 2.1. Syntax and semantics of regular expressions. 8

Figure 2.2. Reference lexer algorithm. 9

Figure 3.1. The Parsify user interface. 20

Figure 3.2. The COLOR algorithm. 30

Figure 3.3. The GEN-PROD algorithm. 32

Figure 3.4. The GEN algorithm. 35

Figure 3.5. The HEURISTIC algorithm. 38

Figure 3.6. The SUCCESSORS algorithm. 39

Figure 3.7. Progression plots. 42

Figure 4.1. The Parsimony user interface. 51

Figure 4.2. Sample of Fuyu source code: 1.fuyu. 52

Figure 4.3. Token Labels Tab after adding the "def" example token. 52

Figure 4.4. Text editor after accepting inferred lexer rule DEF = def. 53

Figure 4.5. Legend after adding new lexer rule for DEF. 53

Figure 4.6. Token Labels Tab after adding five examples of the IDENT token. . 54

Figure 4.7. 1.fuyu with all tokens properly colored. 55

Figure 4.8. Candidate synthesized from one example. 56

Figure 4.9. Candidates synthesized from two examples. 56

Figure 4.10. Candidates synthesized from four examples. 57

Figure 4.11. Parse tree visualizations. 57

Figure 4.12. 1.fuyu after accepting solution. 58

Figure 4.13. 1.fuyu after accepting inferences for expr. 59

viii

Figure 4.14. 1.fuyu after accepting inferences for array. 59

Figure 4.15. Inferred candidate expr→ array. 60

Figure 4.16. The HORIZON algorithm. 63

Figure 4.17. Lexer rules for constructing R-DAG. 66

Figure 4.18. Example R-DAG constructed from lexer rules shown in Figure 4.17. 67

Figure 4.19. The CYK algorithm. 69

Figure 4.20. The BUILD-CYK-AUTOMATON algorithm. 72

Figure 4.21. Candidate matrix SJ{a,A}{b,B}K. 74

Figure 4.22. The PARSYNTH/
1 algorithm. 75

Figure 4.23. The PARSYNTH/
2 algorithm. 76

Figure 4.24. Solution to C2 via PARSYNTH/
2. 77

Figure 4.25. The PARTITION algorithm. 80

Figure 4.26. Before and after partitioning CYK automata for C2. 81

Figure 4.27. The PARSYNTH/
3 algorithm. 81

Figure 4.28. The PARSYNTH/
4 algorithm. 83

Figure 4.29. The APPLY-NESTING algorithm. 83

Figure 4.30. The PARSYNTH-FULL algorithm. 91

Figure 4.31. Number of participants completing each task. 97

Figure 4.32. Average time to completion in minutes. 98

Figure 4.33. Average lexer compile errors per participant. 99

Figure 4.34. Average parser compile errors per participant. Breakdown by type. 100

Figure 4.35. Average parser compile errors per participant. Breakdown by task. 101

Figure A.1. The CYK-COLOR algorithm. 114

ix

Figure B.1. Enclosed and undelimited list. 115

Figure B.2. Unenclosed and undelimited list. 116

Figure B.3. Unenclosed and delimited list. 116

x

LIST OF TABLES

Table 3.1. Benchmark suite. 41

Table 4.1. Example HORIZON queries. 67

Table 4.2. Numerical user responses to exit survey. 103

xi

ACKNOWLEDGEMENTS

I would like to thank my Ph.D. advisor, Sorin Lerner, whose advice over the years

has helped me mature as both a researcher and a person. I also give special thanks to

Ranjit Jhala for being an enthusiastic mentor during the early formative years of my Ph.D.

To the other members of my committee, Samuel Buss, Ryan Kastner, and Todd Millstein,

I am grateful for the patience and generosity with which they gave me their time.

Next, I must thank the members of the UCSD Programming Systems Group for

their camaraderie over the years. Thanks to Dimitar Bounov, John Sarracino, Manish

Gupta, and Ross Tate for being first-class collaborators and friends for whom I will

always have the utmost respect. Thanks also to Alexander Bakst and Panagiotis Vekris,

my officemates for several years, for their good nature and insightful conversation in good

times, and heartfelt commiseration in hard times. Thanks to every Progsys member past

and present with whom I had the good fortune to share a meal, a coffee, or a conversation.

Thanks to the members of the Rita cooking collective: Bridgette Wilson, Dan

Moeller, Greg Long, Jason Greco, Karyn Benson, Marlena Fecho, Ming Wang, and

Ryan Kanoknukulchai. Making friends in a new place can be hard, but you made it feel

effortless. To the members of 24th Street Labs, Kai Wang and Karyn Benson: thanks for

all the surfing, barbecues, and impromptu parties. It was a slice of the California beach

lifestyle that I will always remember fondly. Thanks to Sam Kwak for the thousands of

laps at Canyonview Pool. Thanks to the other members of my cohort that I had the good

fortune to befriend – to name a few, Dan Ricketts, Matt Der, Sheeraz Ahmad, and Wilson

Lian. You’re all class acts.

Finally, I must thank Wai-San, my wife and best friend, for giving me endless

support and strength, for having unyielding confidence in my ability, and for reminding

me that there’s more to life than work.

Chapter 1, in part, is adapted from material as it appears in Leung, Alan; Sarracino,

xii

John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

2015. The dissertation author was the primary investigator and author on this paper.

Chapter 1, in part, is adapted from material currently being prepared for submis-

sion for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for Example-

Guided Synthesis of Lexers and Parsers.” The dissertation author was the primary investi-

gator and author on this paper.

Chapter 2, in part, is adapted from material as it appears in Leung, Alan; Sarracino,

John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

2015. The dissertation author was the primary investigator and author on this paper.

Chapter 2, in part, is adapted from material currently being prepared for submis-

sion for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for Example-

Guided Synthesis of Lexers and Parsers.” The dissertation author was the primary investi-

gator and author on this paper.

Chapter 3, in full, is adapted from material as it appears in Leung, Alan; Sarracino,

John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

2015. The dissertation author was the primary investigator and author on this paper.

Chapter 4, in full, is adapted from material currently being prepared for submis-

sion for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for Example-

Guided Synthesis of Lexers and Parsers.” The dissertation author was the primary investi-

gator and author on this paper.

Chapter 5, in part, is adapted from material as it appears in Leung, Alan; Sarracino,

John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

xiii

2015. The dissertation author was the primary investigator and author on this paper.

Chapter 5, in part, is adapted from material currently being prepared for submis-

sion for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for Example-

Guided Synthesis of Lexers and Parsers.” The dissertation author was the primary investi-

gator and author on this paper.

xiv

VITA

2004 Bachelor of Science, Cornell University

2004–2009 Component Design Engineer, Intel

2012 Research Intern, Microsoft Research, Cambridge

2010–2017 Research Assistant, University of California, San Diego

2017 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

Leung, Alan; Sarracino, John; Lerner, Sorin. “Interactive Parser Synthesis by Example,”
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2015.

Leung, Alan; Bounov, Dimitar; Lerner, Sorin. “C-to-Verilog Translation Validation,”
2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign,
2015.

Leung, Alan; Gupta, Manish; Agarwal, Yuvraj; Gupta, Rajesh; Jhala, Ranjit; Lerner,
Sorin. “Verifying GPU Kernels by Test Amplification,” Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation, 2012.

Tate, Ross; Leung, Alan; Lerner, Sorin. “Taming Wildcards in Java’s Type System,”
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2011.

xv

ABSTRACT OF THE DISSERTATION

Constructing Parsers by Example via Interactive Program Synthesis

by

Alan Leung

Doctor of Philosophy in Computer Science

University of California, San Diego, 2017

Professor Sorin Lerner, Chair

Parsers – programs that extract structure from strings – are fundamental compo-

nents of many software systems. Although parsing theory may have found its roots in

early work on programming languages, the growth of computing during the intervening

decades has expanded the role of parsers into many systems one might not immediately

expect: email clients, video games, spreadsheet programs, and relational databases are

only a few among myriad examples of systems that extract structured information from

input text. As a result, the construction of parsers has become a ubiquitous programming

task that is performed by developers across a large spectrum of domains. It is not just a

xvi

task for programming language experts anymore.

Unfortunately, despite over forty years of research on parsing, writing parsers

remains a painstaking, manual process that is prone to subtle bugs and pitfalls. Existing

tools for generating parsers assume a great deal of background knowledge in parsing and

formal language theory, so the learning curve is high.

In this dissertation, we argue that it is possible to make parsing more accessible

by combining interactive visual feedback with the programming-by-example paradigm,

wherein users synthesize programs simply by providing example inputs and outputs

demonstrating the result of the intended computation. Towards this aim, we present novel

algorithms for (1) constructing syntactic specifications by example, (2) constructing

lexical analyses by example, and (3) visualizing progress toward parser completion. We

instantiate these algorithms in two graphical development environments we have imple-

mented, Parsify and its successor Parsimony, whose central user interaction paradigm is

that of programming-by-example. Finally, via user study we demonstrate that non-expert

users indeed show significantly better performance when using our system.

xvii

Chapter 1

Introduction

A parser, at its most fundamental level, is a program that extracts semantic

information from strings. Given the breadth of this definition, it should be no surprise

that parsers are ubiquitous in software systems. Most obviously, parsers serve a vital

role in the implementation of programming languages – the execution of a compiler or

interpreter, no matter how sophisticated, often starts with the conversion of strings, mere

sequences of bytes, into formats more amenable to further analysis and transformation.

Indeed, the development of parsing theory has been a keystone success in programming

language research, with a history that spans nearly half a century.

However, parsing is not simply the domain of programming language specialists.

With the explosive growth of computing, the role of parsing has also grown as a core

component in many of the software systems on which we rely. Consider only a small

selection of activities that at their core, employ parsers: importing a CSV file into

spreadsheet software, converting a blog post in Markdown into HTML, extracting a query

string from a request URL, mining Apache server logs for anomalous behavior, inspecting

the fields of a TCP packet, reading a configuration file on application startup, extracting

the arguments from a command-line invocation, or interpreting a JSON-formatted string

from a web-based API. One would be hard-pressed to find any sophisticated software

toolchain that does not need to extract information from strings.

1

2

Thus, parsing is a ubiquitous programming task that developers across a large

spectrum of domains need to understand to accomplish their goals. Parsing is no longer

a specialized discipline to be left to those with specialized skills (e.g., programming

language and compiler developers). It follows that we should seek to make parsing

accessible to a wider audience.

Unfortunately, the current state-of-the-art in parsing leaves something to be

desired when it comes to its accessibility. Despite decades of research on parsing, the

construction of parsers remains a painstaking, manual process that requires specialized

knowledge to avoid its subtle pitfalls. Consider Bison, one of the most popular parser

generators in common use today. The following is extracted directly from its user manual:

Bison parsers are shift/reduce automata. In some cases (much more
frequent than one would hope), looking at this automaton is required to
tune or simply fix a parser. – Bison 3.0.2 User Manual

Mainstream parser generators like Bison offer high performance but at the cost

of a steep learning curve: as Bison’s developers admit themselves, an understanding of

shift/reduce automata theory is a necessary prerequisite. Although we mention Bison

first, Bison is not alone when in comes to its high learning curve.

More modern incantations of parser technologies such as ANTLR [59] and Pack-

rat parsing [21, 25] seemingly pave the way for more user-friendly syntax specifications,

but even so are subject to subtle gotchas requiring an understanding of their underlying

parsing strategies. For instance, ANTLR and other LL-based top-down parsers disallow

use of mutually left-recursive productions such as E→ T and T → E +T , which arise

naturally when specifying the form of binary expressions and other recursive forms.

Although it is possible to rewrite such productions to avoid left recursion, the standard

algorithm for doing so leads to an explosion in the grammar [57]. Thus, in practice,

parser writers must search for a more concise refactoring – finding such refactorings can

3

be an art, as better algorithms are not known.

Packrat parsers seek to simplify parsing by eliminating ambiguity via ordered

choice: the first alternate to match a string is always chosen. Unfortunately, use of ordered

choice introduces a particularly subtle quirk: a production such as A→ a|ab, which we

might naturally expect to match either the string a or ab, cannot in fact ever match ab

because a is a prefix of ab. Although a contrived example, this situation arises in practice

whenever one alternate can match the prefix of another, such as when matching if and

if-else blocks.

Finally, the advent of efficient, generalized parsing strategies such as GLL [64]

and GLR [70] promise the ability to use any context-free grammar without restriction,

seemingly solving all our problems. Unfortunately, the price of using a generalized parser

is the freedom to specify grammars rife with ambiguities if left unchecked. The user

is left with the unenviable task of sifting through the resulting parse forests. Detecting

ambiguities, let alone fixing them, can be a difficult undertaking as the general problem

is undecidable. Given the numerous options, perhaps the most daunting task a non-expert

programmer must face is the decision of what parsing technology to even choose in the

first place: each has its own dark corners, and there is no clear-cut winner.

The difficulty of constructing parsers has given rise to a particularly troubling

phenomenon dubbed “cargo cult parsing,” [53] wherein programmers eschew established

parsing technologies in favor of ad-hoc regular expressions, often copied directly from

web search results. Clearly, there is a need for tools to bridge the gap between established

parsing theory and actual practice.

Programming-by-example

Programming-by-example (PBE) is a promising approach to bridging that gap.

PBE is a programming paradigm in which end users synthesize a program by providing

4

sample inputs and outputs demonstrating the result of an intended computation. PBE has

been applied to problems from diverse domains including text editing [42], spreadsheet

table transformations [29], and data extraction from ad-hoc logs [20]. PBE presents an

attractive option for situations in which it is much easier to demonstrate correct behavior

(e.g., the correct parse of an example string), than to provide a specification of that

behavior (e.g., a formal grammar specification accepted by a parser generator).

1.1 Outline of this work

This dissertation argues that it is possible to make parsing more accessible by

using a combination of program synthesis and interactive visual feedback. To support

this argument, we build two graphical development environments, Parsify and Parsimony,

whose central user interaction paradigm is that of programming-by-example.

We first discuss Parsify, an interactive, graphical development environment for

incrementally synthesizing and testing parsers. In Parsify, the user does not write a single

line of code. Instead, the user provides input/output examples demonstrating the result

of a correct derivation with respect to a context-free grammar to be inferred. Parsify’s

underlying synthesis engine then infers a refined grammar consistent with each given

example. The key component of this engine is an iterative algorithm for synthesizing

and refining the grammar one production and one example at a time. In response to any

such inference, Parsify’s interface updates with immediate visual feedback displaying

the result of the change induced by that inference. For ease of use, Parsify provides a

graphical mechanism for specifying example parse trees using only textual selections –

the user need not manually input examples, which is both tedious and error-prone. We

show the effectiveness of Parsify in practice by conducting a series of case studies in

which a co-author successfully implemented the parsers for several input languages from

different domains, each in less than a day of work.

5

We next describe Parsimony, the spiritual successor to Parsify that makes several

key improvements over the previous system. In particular, Parsimony reframes parser

synthesis as satisfaction of a constraint system derived from user-provided examples.

In this more general setting, it is possible to solve for many examples simultaneously,

opening the door to the inference of much more complex solutions consisting of systems

of mutually-dependent productions, rather than just one production at a time. Using

this improved machinery, we design a parametric, extensible framework capable of

inferring entire subgrammars, such as that for algebraic expressions, with only the single

up-front cost of instantiating the framework with a concrete heuristic. Another major

improvement over Parsify is the ability to infer not only context-free grammars, but also

regular expressions for lexer definitions. We describe an algorithm for inferring such

regular expressions from a corpus of existing definitions and show that it has several

nice theoretical properties with regard to the size and quality of the inferred solution.

Finally, we conduct a controlled user study in which 18 participants with no previous

experience using either Parsify or Parsimony were asked to accomplish a series of parser

implementation tasks. The results of our study show that Parsimony is effective at

increasing the participants’ speed at making progress, while also decreasing the number

of mistakes they make.

1.2 Organization

The rest of this dissertation is organized as follows. Chapter 2 provides a

brief overview of language and parsing theory. Chapter 3 describes Parsify, our first

programming-by-example framework for synthesizing parsers. Chapter 4 describes

Parsimony, the spiritual successor to Parsify, and its various improvements. Chapter 5

surveys related work. Finally, Chapter 6 summarizes this dissertation and presents areas

for future progress.

6

1.3 Acknowledgements

This chapter, in part, is adapted from material as it appears in Leung, Alan;

Sarracino, John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings

of the 36th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, 2015. The dissertation author was the primary investigator and author on this

paper.

This chapter, in part, is adapted from material currently being prepared for

submission for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for

Example-Guided Synthesis of Lexers and Parsers.” The dissertation author was the

primary investigator and author on this paper.

Chapter 2

Preliminaries

We begin with a preliminary overview of lexical analysis, context-free grammars,

parsing, and disambiguating filters. The definitions in this chapter are referenced in

Chapters 3 and 4.

2.1 Lexical Analysis

2.1.1 Regular Expressions

A language is a set of strings and a string is a sequence of symbols. A regular

expression (regex) is an algebraic notation for defining a language, the syntax and

semantics of which is defined in Figure 2.1. We denote the language of a regex r by

L (r), and we denote the set of all regexes by R. We say regex r matches string s iff

s ∈ L (r). For any regex r, there exists an equivalent deterministic finite automaton

(DFA) D such that the language of the automaton L (D) =L (r). Language containment

L (D1)⊂L (D2) on DFAs is decidable. Thus ∀r1,r2 ∈R. L (r1)⊂L (r2) is decidable.

2.1.2 Lexers

A lexer is a 3-tuple L = (Σ,Γ,Q) where Σ is a set of symbols called terminals, Γ is

a set of symbols distinct from Σ called the alphabet of L, and Q ∈ [(Σ×R)] is a sequence

of lexer rules. Suppose (τ,s′) = LEX(L,s), where s is a string of symbols drawn from Γ,

7

8

r ::= a symbol
| rr concatenation
| r | r union
| r? optional
| r∗ Kleene closure
| r+ Kleene plus

L (a) = {a}
L (r1r2) = {ss′ | s ∈L (r1)∧ s′ ∈L (r2)}

L (r1 | r2) = {s | s ∈L (r1)∨ s ∈L (r2)}
L (r?) = L (r)∪{ε}
L (r∗) = ∪∞

i=0L (ri)
L (r+) = ∪∞

i=1L (ri)

Figure 2.1. Syntax and semantics of regular expressions.

and LEX is as defined in the reference implementation depicted in Figure 2.2. Informally,

τ is a string of terminals computed by greedily matching subsequences of s with lexer

rules defined by L. s′ is the suffix of s that could not be matched in this way. We say L

fails to lex s if s′ 6= ε . If s′ = ε we say that L lexes s and that τ is the token stream of s

with respect to L. When clear from context, we omit reference to L and simply say τ is

the token stream of s.

2.2 Context-Free Grammars

A context-free grammar is a tuple G = (N,Σ,P,S), where N is a set of nonter-

minals, Σ is a set of terminals, S is a designated start nonterminal, and P⊆ (N×V ∗) is

a set of productions where V = N∪Σ is the set of symbols called the vocabulary of G.

Unless otherwise stated we will use the following notational conventions throughout this

dissertation: the upper case letters A,B,C are nonterminals, the lower case letters a,b,c

are terminals, the lowercase Greek letters α,β ,γ,µ are (possibly empty) strings of sym-

bols in V , the letters w and τ are (possibly empty) strings of terminals, and productions

9

1: function LEX(L,s)
2: let (·, ·,Q) = L
3: (τ,s′)← ([],s)
4: while |s′|> 0 do
5: let (t,s′′) = NEXT-TOKEN(Q,s′)
6: if t 6=⊥ then
7: (τ,s′)← (τ ++[t],s′[|s′′|...])
8: else
9: return (τ,s′)

10: end if
11: end while
12: return (τ,ε)
13: end function
14:
15: function NEXT-TOKEN(Q,s)
16: (t,s′)← (⊥,ε)
17: for (t ′,r) in Q do
18: let s′′ = MAX-MATCH(r,s)
19: if |s′′|> |s′| then
20: (t,s′)← (t ′,s′′)
21: end if
22: end for
23: return (t,s′)
24: end function

Figure 2.2. Reference lexer algorithm. MAX-MATCH(r,s) is the longest prefix of s
matched by r.

(A,β) ∈ P are written equivalently as A→ β . We write G(A) to mean the grammar G

with start nonterminal replaced by A.

2.2.1 String Indexing

String indices begin at 0. We write α[i] to mean the symbol at index i of string

α . The notation α[i...] denotes the suffix of α starting at index i, and the notation α[i... j]

denotes the substring of α starting at index i with length j− i. We write |α| to mean the

length of α and αβ or α ·β for concatenation of α and β .

10

2.2.2 Derivations

We say α derives β in a single step, written α ⇒ β , if P contains a production

A→ µ such that α = γAδ and β = γµδ . Equivalently,⇒ is the single-step derivation

relation such that (α,β) ∈⇒ iff α derives β in a single step. Let⇒∗ be the transitive

closure of⇒. We say α derives β iff (α,β) ∈⇒∗, and a derivation of β from α is a

sequence α ⇒ ...⇒ β that witnesses α ⇒∗ β .

2.2.3 Sentential Forms

A sentential form is a string α ∈V ∗ such that S⇒∗ α . A sentence is a sentential

form containing only terminals, and the language of G, written L (G), is the set of all its

sentences. A terminated derivation is a derivation whose final element is a sentence. A

full derivation is a terminated derivation whose initial element is the start nonterminal S.

We define DG(w) to be the (possibly empty) set of all full derivations of sentence w with

respect to G. We write D(w) when G is clear from context.

2.2.4 Parse Trees

A parse tree is a tree t such that: (a) every internal node is labeled with a

nonterminal in N, (b) every leaf node is labeled with a terminal in Σ, (c) for every

internal node with label A and children with labels v1, ...,vn ∈V , there exists a production

A→ v1...vn ∈ P. For ease of textual representation, we depict trees as nested bracketed

forms [L t1 ... tn], where L is the node label, and each of t1, ..., tn are themselves either

bracketed forms or leaf labels. The yield of t, written yield(t), is the string formed by

concatenating its leaf node labels (e.g., yield([A [Ba]b]) = ab). The signature of t, written

sig(t), is the production corresponding to the root of t (e.g., sig([A [Ba]b]) = A→ Bb).

The root symbol of t, written rootSymbol(t), is the symbol at the root node of t (e.g.,

rootSymbol([A [Ba]b]) = A).

11

For any derivation d we can construct its corresponding parse tree t by induction

on the elements of d. Let tree(d) be the map from derivations to their parse trees. We

can now define the set of parse trees of a sentence w as follows:

trees(w) = {tree(d) | d ∈ D(w)}

which we extend to grammars naturally:

trees(G) =
⋃

w∈L (G)

trees(w)

Index Trees

The index tree t̂ of t is the tree isomorphic to t, with identical internal node labels,

but with its leaf labels replaced from left to right by consecutively increasing integers

starting from 0. For example, the index tree of [A [Ba]b] is [A [B 0] 1]. We define index(t)

to be the map from parse trees to their index trees. The span of index tree t̂, written

span(t̂), is the pair (i, j) of the labels of its leftmost and rightmost leaves, respectively.

Ambiguity

A sentence w is ambiguous with respect to G iff

∃ d1,d2 ∈ DG(w). tree(d1) 6= tree(d2)

For brevity, we say w is ambiguous when G is clear from context. A grammar G is

ambiguous iff L (G) contains an ambiguous sentence.

12

2.2.5 Parsers

A parser p is a function of type G×Σ∗→P(trees(G)×Σ∗) that given a grammar

G and string w, returns a set of tuples, called parses, with two elements: a parse tree t for

some non-empty prefix of w, and a string suffix w′ such that w = yield(t) ·w′. In other

words, a parser does not necessarily consume its entire input string, and thus returns the

unconsumed portion. A full parser p is a parser that always consumes its entire input or

not at all: the second element of each parse must be the empty string. (Note that this does

not mean a full parser always produces a parse tree for any string: if a string w /∈L (G)

then p(G,w) = /0.)

Generalized Parsers

A parser p is generalized iff

∀w ∈L (G),w′ ∈ Σ
∗. p(G,w ·w′)⊇ trees(w)×

{
w′
}

In other words, generalized parsers produce all possible parse trees for all inputs.

Real-world examples of generalized parsers are GLL or GLR-based parsers such as

instaparse [32] or Elkhound [50], respectively. In the remainder of this dissertation, let

pGLL be such a generalized parser.

2.3 Disambiguating Filters

We formalize disambiguating filters as predicates on trees: the intuition is that

whenever the predicate evaluates to true, we say that the tree is invalid and removed

from the parser’s output set. Disambiguating filters provide a declarative approach

to removing ambiguity from syntax specifications without resorting to rewriting the

grammar’s productions.

13

More formally, let π(t) be a predicate on trees, and let p be a parser. The

disambiguation of p with respect to π , written p|π is defined as follows:

p|π(G,w) = {(t,w′) | ¬π(t)∧ (t,w′) ∈ p(G,w)}

The composition of two filters is simply disjunction: (π1 ◦π2)(t) = π1(t)∨π2(t); we lift

disambiguations to sets of filters Π naturally:

p|Π(G,w) =

(t,w′) | ¬(
∨

π∈Π

π(t))∧ (t,w′) ∈ p(G,w)


2.3.1 Associativity Filters

Associativity filters rule out a common form of ambiguity that arises when

there exists a sentential form A⊗A in which two valid derivations are A⇒∗ A⊗A⇒∗

α⊗β ⊗A⇒∗ α⊗β ⊗ γ and A⇒∗ A⊗A⇒∗ A⊗β ⊗ γ ⇒∗ α⊗β ⊗ γ . The underlying

problem is that the two derivations induce trees of different shape: [A [A α⊗β]⊗ [A γ]]

and [A [A α]⊗ [A β ⊗ γ]], respectively. We define here a constructor for left-associativity

filters that given a set of productions R, returns a filter that rejects trees containing

non-left-associative uses of any production in R:

fπL(R) = λ t.∃ t ′ ∈ nodes(t).
∨n

i=1
(
sig(t ′) ∈ R∧ sig(ti) ∈ R

)
if t ′ = [A t0...tn]

false otherwise

In words, left-associativity filters reject any tree in which a parent and a child in non-

leftmost position each have a signature in R. Analogously, right-associativity filters do

so for non-rightmost positions, and non-associativity filters simply disallow any child

14

from sharing its parent production. The following are the analogous definitions for

right-associativity and non-associativity filters, respectively.

fπR(R) = λ t.∃ t ′ ∈ nodes(t).
∨n−1

i=0
(
sig(t ′) ∈ R∧ sig(ti) ∈ R

)
if t ′ = [A t0...tn]

false otherwise

fπN (R) = λ t.∃ t ′ ∈ nodes(t).
∨n

i=0
(
sig(t ′) ∈ R∧ sig(ti) ∈ R

)
if t ′ = [A t0...tn]

false otherwise

2.3.2 Priority Filters

We now define simple priority filters based on a relative priority between two

productions.

fπ>(rh,rl) = λ t.∃ t ′ ∈ nodes(t).
sig(t ′) = rh∧

∨n
i=0 sig(ti) = rl if t ′ = [A t0...tn]

false otherwise

Priority filters reject any tree in which a child’s production has lower priority than

its parent’s.

15

2.3.3 Consistency

Because filters are simply predicates on trees, it is possible that a composition

of filters gives rise to a trivially satisfiable predicate
(
π(t)∨π ′(t)

)
↔ true. Such a

composition rejects all trees (e.g., consider the composition of two filters that specify

left- and right-associativity of the same operator). In this case, we say the set of filters is

inconsistent, and otherwise consistent.

2.3.4 Filter Specification Syntax

Having established the semantics of disambiguating filters, we now describe the

corresponding syntax.

Associativity Filter Syntax

The following two syntactic forms are two different ways to specify a left-

associativity filter of one production: fπL({A→ β}). To specify right-associativity

or non-associativity, we replace left with right or nonassoc, respectively.

left { A→ β }

A→ β { left }

To specify a left-associativity filter over multiple productions, we use the following

syntax, which corresponds to the filter fπL({A1→ β1, A2→ β2, ..., An→ βn}).

left { A1→ β1 A2→ β2 ... An→ βn }

The forms for right and nonassoc are immediately analogous.

16

Priority Filter Syntax

The following syntactic form specifies the priority filter fπ>(A1→ β1 , A2→ β2).

A1→ β1 > A2→ β2

For syntactic clarity, a sequence of such forms may be enclosed in a priorities block.

Enclosure in a priorities block has no effect on the semantics of the enclosed filters.

priorities {

A1→ β1 > A2→ β2

A3→ β3 > A4→ β4

...

An−1→ βn−1 > An→ βn

}

2.4 Acknowledgements

This chapter, in part, is adapted from material as it appears in Leung, Alan;

Sarracino, John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings

of the 36th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, 2015. The dissertation author was the primary investigator and author on this

paper.

This chapter, in part, is adapted from material currently being prepared for

submission for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for

17

Example-Guided Synthesis of Lexers and Parsers.” The dissertation author was the

primary investigator and author on this paper.

Chapter 3

Parsify

This chapter presents Parsify, our first instantiation of programming-by-example

in the context of parser construction. To achieve a high-level of interactivity and user-

accessibility, we architect Parsify to adhere to the following three design principles:

• We should minimize the amount of manual coding asked of the user.

• The user should have intuitive, real-time feedback in response to incremental

changes to the parser.

• The user should be able to explore the design space of possible parser implementa-

tions easily and quickly.

To achieve these principles, Parsify presents an exploratory interface in which

the user poses examples that induce the shape of productions in the underlying grammar

being inferred. These examples are presented in the form of text selections (i.e., using a

mouse) in an editor window presenting the file the user wishes to parse. The user then

examines the result of each inference step visually, as Parsify presents an overlay with

colored regions (and corresponding parse trees) that are continuously updated to reflect

each inference. In particular, ambiguities are presented immediately after the offending

production has been inferred, allowing the user to either (a) ask Parsify to automatically

18

19

synthesize a disambiguating strategy, or (b) undo the last inference and proceed along

another path to avoid the ambiguity.

This chapter covers both the user interaction model and the underlying algorithms

developed to implement the Parsify development environment. To show the usefulness of

Parsify as a development tool, we additionally discuss the results of several case studies

in which we used Parsify to implement parsers for a variety of languages. In summary,

this chapter details the following contributions:

1. We present a novel application of programming-by-example to the domain of

parsers for context-free languages.

2. We present techniques and algorithms for efficiently visualizing progress, inferring

productions, and synthesizing disambiguating filters by example, including novel

uses of generalized parsers and A∗-search.

3. We evaluate our approach’s effectiveness via case studies: we have generated

parsers for a test suite consisting of Verilog modules, Apache logs, Tiger programs,

and SQL queries.

3.1 Overview

We begin with a series of examples illustrating how a user might employ Parsify

to implement the parser for a small untyped functional language. As we layer additional

features into the concrete syntax we will see how Parsify is able to handle various practical

difficulties that arise during parser development. The example is kept very simple for the

purpose of exposition. Our tool can actually handle much more complicated languages

and grammars, as described in our evaluation in Section 3.3. Also note that for the

purpose of exposition, we describe features using textual descriptions where possible,

although the actual implementation of Parsify provides a fully graphical user interface.

20

(b)

(a)

(e)

(g)

(f)

(c) (d)

Figure 3.1. The Parsify user interface: (a) File View, (b) Legend, (c) Label Box, (d) Label
Button, (e) Parse Tree Pane, (f) Resolution Pane, and (g) Negative Label

3.1.1 User Interface Overview

Figure 3.1 shows a sample view of the Parsify user interface with several features

highlighted. We now briefly describe each feature. The File View (a) and Legend (b)

together show parsing progress on the current file: each color represents a syntactic

category (i.e., nonterminal), as described shortly. The Label Box (c) and Label Button (d)

allow the user to annotate substrings in the file with labels. The Parse Tree Pane (e) shows

the parse tree at the current cursor location in the File View. The Resolution Pane (f) is

used to resolve ambiguities. As we progress through our example, each feature will be

explained in further detail.

3.1.2 Basic Inference

To start defining a parser for a simple functional language, the user first constructs

a file with the following arithmetic expressions:

1 + 2 ;

21

3 * 4 - 5 ;

12 + x + 19 ;

Every Parsify session begins with default predefined rules that encode basic tokens

such as integers and alphanumeric identifiers, along with the standard assumption that

whitespace is a discarded token separator. Using these default rules, Parsify colorizes

various substrings that can be derived from the built-in ident or numeral rules, where

uncolored regions represent substrings that cannot yet be derived from any rule in the

grammar:

1 + 2 ;

3 * 4 - 5 ;

12 + x + 19 ;

The above colorization is our textual representation of the UI mechanism shown in the

File View of Figure 3.1. The user’s first interaction is to “teach” Parsify that a literal

numeral is a form of expression. To do this, the user selects the substring 2 in the File

View, types expr in the Label Box, and then clicks on the Label Button. This instructs

Parsify to apply the label expr to the selected string 2, which causes Parsify to infer a new

production to add to the grammar: expr→ numeral. Whenever making an inference,

Parsify immediately recolors its output to represent the change. In particular, the first

line now becomes 1 + 2 to reflect the fact that the substrings 1 and 2 can be derived

from the new production for expr. Notice that there now exist two valid colorizations

for the substring 1 (and likewise 2), as they can be derived from either of rules expr and

numeral – in such cases, Parsify prefers expr as it corresponds to the “more general”

production (we informally define the more general production as the one higher in the

parse hierarchy – we defer to Section 3.2 a formal definition). Following the same

procedure, the user can likewise select the identifier x on the third line and apply label

22

expr, from which Parsify infers expr→ ident and produces the following colorization

in which all identifier and numerals are correctly parsed as expressions.

1 + 2 ;

3 * 4 - 5 ;

12 + x + 19 ;

3.1.3 Infix Expressions

The user now proceeds to binary infix expressions by applying label expr to the

substring 1 + 2, which allows Parsify to infer the new production expr → expr +

expr.

Associativity

At this point, the user has unwittingly introduced an ambiguity into the grammar,

a concrete example of which is found on line 3. Parsify immediately detects that line 3 has

an ambiguous parse and visually depicts it with a red dashed underline: 12 + x + 19.

The ambiguity results because the expr production just introduced allows for both left-

associative and right-associative parses: [12 + x] + 19 and 12 + [x + 19]. It is in

this situation that existing parser generators such as Bison or ANTLR would require

some modification to the syntax specification to remove the offending construct. Parsify

shields the user from performing such modifications manually by simply presenting both

parse trees visually and asking the user to choose the correct one. The different parse

trees are shown one at a time in the Parse Tree Pane, as shown in Figure 3.1, with Next

and Prev buttons to browse through the different trees, and a Resolve Ambiguity button

to resolve the ambiguity using the currently displayed tree. The Parse Tree Pane of

Figure 3.1 is precisely in the middle of such an ambiguity resolution phase. Let’s assume

the user intends + to be a left-associative operator, thus choosing the left-associative parse

23

tree. To implement this preference, Parsify makes use of disambiguating filters to remove

the unwanted parses. More specifically, in this case Parsify automatically synthesizes

the left-associativity filter expr→ expr + expr {left}, which disallows derivation of

trees with form expr + [expr + expr]. The filter is displayed in the Resolution Pane

at the bottom of the UI, as shown in Figure 3.1.

Priority

Now the user proceeds similarly for the * and - operators, teaching Parsify the

productions expr → expr * expr and expr → expr - expr by applying the label

expr to substrings 3 * 4 and 3 * 4 - 5 in sequence. This exposes a new ambiguity

evidenced on line 2, 3 * 4 - 5, due to the fact that no precedence has been specified

between the * and - operators. Parsify presents two valid parse trees, [3 * 4] - 5

and 3 * [4 - 5], from which the user chooses the first: the * operator should bind

tighter than the - operator. Parsify is able to synthesize a priority filter that disallows

derivation of trees that give - higher precedence than the * operator: expr→ expr *

expr > expr→ expr - expr. Note that this is not the only filter that discriminates

between the two parses. Another valid filter that disallows the second parse tree would

be left { expr → expr * expr ; expr → expr - expr}, which specifies that

the * and - operators are left-associative with respect to one another. This is the reason

for displaying the actual filter at the bottom of the UI in the Resolution Pane, as shown in

Figure 3.1. If the proposed filter is not the one the user intended, Parsify provides the

option of rejecting the suggested filter by clicking the red box marked X. The synthesis

algorithm then proceeds to search for another filter that also satisfies the user’s preference

of parse tree. In the above example, Parsify would first present the priority filter. If the

user rejects this filter, Parsify’s next suggestion would be the left-associativity filter.

24

3.1.4 Function Definitions

The user now adds functions to the language. To begin, the user appends to the

current file some examples of function definitions.

fun square x = x * x ;

fun area w h = w * h ;

Notice that some of the colors are incorrect: in particular, it appears the fun

keywords are incorrectly identified as exprs. Of course, this is to be expected because

we have not given Parsify any indication that the sequence of characters “fun” should be

treated any differently than other identifiers.

Negative labels

To inform Parsify of the mistake, the user can apply negative labels in the Parse

Tree Pane against the labeling on both keywords. The user does this by clicking on the

nodes in the parse tree whose labeling is wrong, and then clicking on the red box that

appears next to the node. An example of this mechanism being applied to an expr label

is shown at (g) in Figure 3.1. In response to the negative labels, Parsify now refines its

output:

fun square x = x * x ;

fun area w h = w * h ;

This is almost, but not quite what the user wants – the function names and formal

parameters have been identified as exprs as well, but the desired syntax restricts them to

be bare identifiers. Thus we apply negative labels against the expr label on all offending

substrings, resulting in the following:

fun square x = x * x ;

fun area w h = w * h ;

25

Generalization

Now the user applies the label fundef to each of the two lines above. If Parsify

follows the process described so far, it would produce two basic productions of the form

fundef → ‘fun ’ ident ident = expr ;

fundef → ‘fun ’ ident ident ident = expr ;

Although these productions handle the given program, they preclude function

definitions that have greater than 2 parameters. Thus, Parsify detects such redundant

productions and infers the generalization

fundef → ‘fun ’ ident+ = expr ;

in which an arbitrary number of parameters is permissible.

3.1.5 Function Calls

Now let us turn our attention to the last feature the user will add: syntax for

function calls. As in OCaml or Haskell, the user wishes a function call to take the form

of expressions separated by whitespace. The user adds one last example to the file, an

expression containing a function call:

y * area x y + y - z ;

Unfortunately, this colorization is quite far from the user’s desire. It seems y

* area has been parsed as an expr even though area should be the beginning of the

function call area x y. The root cause, of course, is that we have not provided an

example of a function call to Parsify, so it does not know to treat area x y as a new

kind of expression.

The user provides 3 negative labels to tell Parsify that it has incorrectly colored

various parts of our expression:

26

y * area x y + y - z ; → negate y * area

y * area x y + y - z ; → negate y + y - z

y * area x y + y - z ; → negate y + y

y * area x y + y - z ;

Now the user selects area x y and applies label call , then expr, to reflect that

a call is a kind of expression.

y * area x y + y - z; → apply c a l l : area x y

y * a r e a x y + y - z; → apply expr: area x y

At this point, Parsify correctly colors the full expression but also reveals an

ambiguity: y * area x y + y - z. There are 9 valid parse trees for this string, but

the intended parse groups subexpressions to the left and gives function calls highest

precedence:

[[[y * [area x y]] + y] - z]

After the user chooses the intended parse tree, Parsify is able to synthesize the

following set of disambiguating filters,

left {

expr → expr + expr

expr → expr - expr

}

expr → call > expr → expr * expr

which specify that the + and - operators are left-associative with respect to one another,

and that function calls have higher precedence than *, as expected.

3.1.6 Challenges

To achieve this level of interaction, we address several challenges:

27

1. What is a concise, natural way of presenting partial progress to the user? Although

we experimented with many representations, we found the most natural represen-

tation was that of a coloring in which different nonterminals of the grammar

correspond to different colors, and colored regions are “as big as possible.”

2. How do we achieve performance capable of supporting interactive use? The

interface would be unusable if the user were forced to wait long periods of time

between colorings. Our solution employs a greedy algorithm for generating colored

labels based on ranking of partial parses generated by a GLL parser.

3. How can we synthesize disambiguating filters in a more principled way than brute

force? Even with a small parse tree, the number of possible disambiguations

can grow exponentially. Our solution formulates synthesis as an instantiation of

A∗-search to avoid unlikely candidates.

Section 3.2 details our solutions to these challenges.

3.2 Algorithm

In this section we describe the user interactions and core algorithms employed by

Parsify for inferring context-free grammars. We formalize the model of user interaction

by defining a core set of operations as transitions between session states that represent a

snapshot of the system’s state at any point in time. Then, we define various user-visible

actions as compositions of these operations.

3.2.1 Session State

Intuitively, a session state encapsulates a hypothesis for the grammar and set

of disambiguating filters inferred from examples seen so far. After any user operation,

this hypothesis is updated to reflect new information. A session state σ is a tuple

28

(G,Π,M,w,C) where G is a grammar, Π is a set of disambiguating filters, M is a set of

labels (the negative labels of σ), w is the text we wish to parse (a string of terminals in

the alphabet of G), and C is a coloring on w.

A label is a tuple (A, i, j) ∈ N×N×N. That is, a label contains a nonterminal

together with a start index (inclusive) and end index (exclusive) that index into the string

w. The set of all labels is L. A coloring C ⊆ L is simply a set of labels. The intuition

is that each label in a coloring corresponds 1-to-1 with a single colored region in the

interface: our interface graphically presents a different color for each nonterminal. For

example, if (expr,3,10) ∈ C , then Parsify colors the seven character substring, starting

at index 3, with the color corresponding to expr.

3.2.2 Operations

The following 5 atomic operations comprise the building blocks for user-facing

interactions in Parsify:

1. DRAW: compute a new coloring.

2. ANNOTATE: accept a new label.

3. GENERALIZE: generalize an existing production.

4. NEGATE: reject an existing label.

5. RESOLVE: synthesize a new disambiguating filter.

In particular, each action performed by the user maps to a sequence of operations as

follows:

1. Apply Label: ANNOTATE→ GENERALIZE→ DRAW

2. Reject Label: NEGATE→ DRAW

29

3. Disambiguate: RESOLVE→ DRAW

Note that we intentionally omit two auxiliary features of our interface from the

formalism: (a) visualizations of parse trees, which are just visual sugar for the underlying

parse trees, and (b) red dashed underlines under ambiguous regions, which are applied as

a postprocessing step on the editor view after generating a coloring.

We now define the semantics of each atomic operation as functions from session

state to session state. We use the notation JOKσ to denote the result of executing operation

O on state σ . We define the initial session state to be σ0 = (G0, /0, /0,w, /0), where w is

the string being parsed and G0 is an initial grammar containing only predefined, basic

productions for tokens such as identifiers and numbers. To ease exposition, we make

the simplifying assumption that inputs contain no contiguous region of more than one

whitespace symbol, although as previously mentioned, our actual implementation handles

arbitrary whitespace by discarding whitespace at token boundaries.

3.2.3 Draw

Our system relies crucially on presenting colorings that correspond to likely

sentential forms in the language being parsed. To do this, we define a comparison

function better that prefers parses according to the following metric: (a) prefer parses

that consume more text, and (b) when the yield of two parse trees are of the same length,

prefer the tree that subsumes the other. Subsumption is determined by constructing

a preorder v∗G on the nonterminals of the grammar such that tree t subsumes tree

t ′ iff rootSymbol(t ′) v∗G rootSymbol(t)∧ rootSymbol(t) 6v∗G rootSymbol(t ′). Intuitively,

A v∗G B if there may exist a parse tree with root symbol B that contains a node with

symbol A. Formally, let G = (N,Σ,P,S). We define v∗G as the transitive closure of

binary relation vG, where AvG B iff A = B∨ (B→ αAβ ∈ P). We can then sort parses

according to better and choose the root symbol of the highest rated parse tree to be part

30

1: function COLOR(σ)
2: let (G,Π,M,w0,_) = σ

3: let (N,_,_,_) = G
4: C ← /0;w← w0;n← 0
5: while |w|> 0 do
6: let X = {(t,w′) |
7: ∃ A ∈ N. (t,w′) ∈ pGLL|Π(G(A),w)∧
8: ∀ t̂ ∈ nodes(index(t)).LABEL(t̂,n) /∈M}
9: if X 6= /0 then

10: let (t,w′) = first(sortBy(better,X))
11: C ← C ∪{LABEL(index(t),n)}
12: w← w′;n← n+ |yield(t)|
13: else
14: w← w[1...];n← n+1
15: end if
16: end while
17: return C
18: end function
19:
20: function LABEL(t̂,n)
21: let (i, j) = span(t̂)
22: return (rootSymbol(t̂), i+n, j+1+n)
23: end function

Figure 3.2. The COLOR algorithm.

of a member of the new coloring (in the case of ties, we simply choose one).

The COLOR function that actually computes a new coloring is a simple greedy

algorithm that performs a linear scan, accepting the best parse found at each examined

position. The algorithm is shown in Figure 3.2.

With COLOR defined, we can now define the operation DRAW, which simply

threads a new coloring into the session state:

JDRAWK(σ = (G,Π,M,w,C)) = (G,Π,M,w,COLOR(σ))

An important consideration is that it is possible for the computed coloring to

31

be incorrect, in the sense that the user does not agree with the label assigned to some

part of the text. (Recall from Section 3.1.4 that this occurred when fun keywords were

incorrectly identified as instances of expr.) In such cases, it is important that the user be

permitted to inform Parsify that it has made a mistake. The NEGATE operation, which we

define next, allows the user to do exactly that.

3.2.4 Negate

The NEGATE operation is the user’s mechanism for specifying that a coloring

is incorrect. In particular, negation of a label tells Parsify that in subsequent DRAW

operations, (a) that label cannot appear in a coloring again, and (b) no parse tree whose

subtrees induce the negated label may be considered when computing a new coloring.

Line 8 of function COLOR performs this check. The definition of the NEGATE operation

is then almost trivial: we simply add the negated label to the set of negative labels M in

the session state.

JNEGATE(A, i, j)K(σ = (G,Π,M,w,C)) =

(G,Π,M∪
{
(A, i, j)

}
,w,C)

Returning to our running example, consider the situation from Section 3.1.4 in

which the user wished to tell Parsify that the substring “fun” at indices 0 through 3 was

incorrectly identified to be an expr. In the UI, the user applied a red box to the offending

parse tree node, which caused the interface to immediately refresh with a corrected

coloring. Under the hood, Parsify actually performed the operation NEGATE(expr,0,3),

followed immediately by a DRAW operation to regenerate a new coloring respecting the

new constraint.

32

1: function GEN-PROD(σ ,A, i, j)
2: let (_,_,_,w,C) = σ

3: idx← i;β ← []
4: while idx < j do
5: let X = {(A′, i′, j′) ∈ C | idx = i′∧ j′ < j}
6: if |X |= 1 then
7: let {(A′,_, j′)}= X
8: β ← β ·A′
9: idx← j′

10: else if |X |= 0 then
11: β ← β ·w[idx]
12: idx← idx+1
13: else // unreachable
14: end if
15: end while
16: return A→ β

17: end function

Figure 3.3. The GEN-PROD algorithm.

3.2.5 Annotate

When the user selects a region of text and applies a name to the selection, the

underlying operation is an ANNOTATE operation that generates a new production using

the selected region as a template for the body of the production. The algorithm for

generating this production, called GEN-PROD, is shown in Figure 3.3.

Informally, GEN-PROD scans the selected range from left to right looking for

labels in C that fit within the selected range. Intuitively, in the user interface this

corresponds to a textual selection in the File View – for every colored region contained

within the selection, Parsify adds the corresponding nonterminal to the production body

being inferred (Lines 6–9). If Parsify finds a terminal that is uncolored, then Parsify

simply appends the terminal to the inferred production body (Lines 10–12). The branch

body on Line 13 is unreachable because its corresponding branch predicate is satisfied

when |X | > 1, which can only happen when the coloring contains overlapping labels.

33

However, COLOR never produces overlapping labels due to the increment on Line 12 of

function COLOR.

The definition of ANNOTATE generates a new production with GEN-PROD, then

simply threads the production into the grammar.

JANNOTATE(A, i, j)Kσ = (G′,Π,M,w,C)

where (G,Π,M,w,C) = σ

(N,Σ,P,S) = G

P′ = P∪
{

GEN-PROD(A, i, j)
}

G′ = (N∪A,Σ,P′,S)

3.2.6 Generalize

The GENERALIZE operation provides Parsify the ability to expand the grammar

by permitting arbitrary repetition of strings in a controlled fashion. For this purpose,

we extend our grammars with a standard meta-syntax for repetitions borrowed from

Extended Backus-Naur Form (EBNF): α+ (and α∗) for 1 or more (and 0 or more)

repetitions of α . Note that these constructs do not increase expressive power beyond

context-free grammars and can be desugared into forms without explicit repetition [26].

Given two production bodies, the function GEN, shown in Figure 3.4, attempts

to find a compatible partition of both bodies. Informally, a compatible partition of

two strings α,β ∈ V ∗ is a 1-to-1 correspondence between non-empty substrings of

α and β such that corresponding substrings are either (a) exactly equal, or (b) both

consistent with some number of repetitions of the same sequence of symbols, possibly

separated by occurrences of a single delimiter symbol. For example, suppose α =

BAAC;C and β = BAAAC. Then a compatible partition of α and β would be B,AA,C;C

34

and B,AAA,C because B equals B, AA equals AAA modulo repetitions, and C;C equals

C modulo repetitions with delimiter “;”. The result of generalization would be a new

body BA+C(;C)∗. The algorithm uses brute force search of all partitions with 4 or fewer

non-empty substrings to find a compatible partition.

The algorithm uses two helper functions: (a) REP-EQ returns nonterminal A if

its two arguments match regex pattern A+ (the same nonterminal repeated 1 or more

times), (b) DELIM-EQ returns the pair (A,b) if its two arguments match regex pattern

A(bA)∗ (the same nonterminal A repeated 1 or more times, with repetitions separated

by the delimiter b), and both functions return ⊥ if no match is found. We also use two

functional programming primitives: zip, which given two sequences returns a sequence

of pairs of corresponding input elements, and concat, which concatenates the elements

of a sequence.

With the specifics defined, we can now define our GENERALIZE operation, which

takes a nonterminal and two production bodies to be generalized, and replaces the

corresponding productions with a generalized variant if found:

35

1: function PARTITION(α,n)
2: return {∆ | concat(∆) = α ∧|∆|= n ∧

∀δ ∈ ∆. |δ |> 0}
3: end function
4:
5: function COMPATIBLE(∆α ,∆β)
6: return ∀(α,β) ∈ zip(∆α ,∆β).α = β ∨

REP-EQ(α,β) 6=⊥∨DELIM-EQ(α,β) 6=⊥
7: end function
8:
9: function EXTRACT(α,β)

10: if α = β then
11: return α

12: else if REP-EQ(α,β) 6=⊥ then
13: return regex REP-EQ(α,β)+

14: else if DELIM-EQ(α,β) 6=⊥ then
15: let (A,b) = DELIM-EQ(α,β)
16: return regex A(bA)∗

17: else return α

18: end if
19: end function
20:
21: function GEN(α,β)
22: for 1≤ n < 5 do
23: for (∆α ,∆β) ∈ PARTITION(α,n)× PARTITION(β ,n) do
24: if COMPATIBLE(∆α ,∆β) then
25: γ ← []
26: for (α ′,β ′) ∈ zip(∆α ,∆β) do
27: γ ← γ · EXTRACT(α ′,β ′)
28: end for
29: return γ

30: end if
31: end for
32: end for
33: return ⊥
34: end function

Figure 3.4. The GEN algorithm.

36

JGENERALIZE(A,α,β)Kσ

=


(G′,Π,M,w,C) if GEN(α,β) 6=⊥

σ otherwise

where (G,Π,M,w,C) = σ

(N,Σ,P,S) = G

P′ = P−{A→ α}

−{A→ β}

∪
{

A→ GEN(α,β)
}

G′ = (N,Σ,P′,S)

Now let us return to the running example from Section 3.1.4, in which we

wished to generalize two productions specifying the syntax for function definitions. The

compatible partition discovered by GEN is depicted visually in the following tables: each

column of the upper table contains a corresponding pair of substrings, and the final row

depicts the generalized production body returned by GEN:

‘fun’ ident ident = expr

‘fun’ ident ident ident = expr

‘fun’ ident+ = expr

3.2.7 Resolve

The RESOLVE operation enables Parsify to synthesize a set of disambiguating

filters given an ambiguous sentence w and its correct parse tree t. The goal is to find a set

37

of filters that reject all but the correct parse tree on the example. We use the following

strategy for defining and searching the space of possible disambiguations:

1. Identify a set of possible filters Πtpl based on the structure of the provided ambigu-

ous example,

2. define a heuristic cost function h that assigns a score to each candidate drawn from

P(Πtpl),

3. define the successors relation on candidates, and

4. perform A∗-search [30] on the directed graph induced by successors to find a

low-cost set of filters that correctly disambiguates the example.

We wish to minimize the number of candidates considered in order to reduce the

space of filters to search. The main intuition is that even though a parse tree may be

large, we consider only those subtrees whose yield is ambiguous, which may be small.

Let T = {t ′ ∈ nodes(t) | yield(t ′) is ambiguous w.r.t. G(rootSymbol(t ′))}. We define a

candidate set of productions Rambig = {sig(t) | t ∈ T}∪{sig(t ′) | t ∈ T ∧t ′ ∈ children(t)},

and from Rambig construct our template set Πtpl as follows:

Πtpl ={ fπ>(r,r
′) | r,r′ ∈ Rambig∧ r 6= r′} ∪

{ fπL({r}), fπR({r}), fπN ({r}) | r ∈ Rambig} ∪

{ fπL({r,r′ }), fπR({r,r′ }), fπN ({r,r′ }) |

r,r′ ∈ Rambig∧ r 6= r′}

In other words, Πtpl consists of all possible priority and associativity filters that mention

two or fewer productions in Rambig. Although this may seem like a large set, we rely on

heuristic-guided search to avoid evaluating many poor candidates.

38

1: function HEURISTIC(Π, t)
2: let ps = pGLL|Π(G(rootSymbol(t)),yield(t))
3: if ¬∃(t ′,s′) ∈ ps. t ′ = t then
4: return ∞

5: end if
6: if |ps|= 1 then
7: return 0
8: else
9: return min(|ps|,10)

10: end if
11: end function

Figure 3.5. The HEURISTIC algorithm.

For our heuristic, we wish to assign higher cost to candidates that are less likely

to correctly disambiguate the given example. Our heuristic is simple: prefer candidates

that invalidate more parse trees, but reject a candidate if it rejects the correct tree. More

precisely, we define a HEURISTIC function that takes a candidate set of disambiguating

filters Π, a correct tree t, and returns the score for Π. The algorithm is shown in Figure 3.5.

There are three particular features to note: (a) on line 4, we return ∞ if the resulting

disambiguation removes the intended parse tree from the set of parses, because the

candidate cannot possibly be a solution, (b) on line 7, we return 0 if the candidate has

rejected all but the intended parse tree, meaning this candidate is indeed a solution, and

(c) on line 9, we otherwise cap our heuristic cost at 10 such that we need not enumerate

parse trees beyond the first 10 returned by the parser (the parser computes parse forests

lazily).

To define the successors of a candidate Π, the naive approach would be to simply

append each member of Πtpl to Π in turn. In other words, a successor is just a candidate

with one more filter than before. Unfortunately, with such a construction many of the

successors would be inconsistent and thus useless. Thus, we define a more refined notion

of successor that excludes any inconsistent candidate. The algorithm for computing the

39

1: function SUCCESSORS(Π)
2: for π ∈Πtpl do
3: let Π′ = MERGE-FILTERS(Π∪{π})
4: if ¬CONSISTENT(Π′) then
5: next
6: else
7: yield Π′

8: end if
9: end for

10: end function

Figure 3.6. The SUCCESSORS algorithm.

successors of candidate Π, called SUCCESSORS, is shown in Figure 3.6. We define helper

function MERGE-FILTERS(Π) as follows:

1. If there exist in Π two priority filters π>(r,r′) and π>(r′,r′′), then add the filter

π>(r,r′′) to Π if it does not already exist.

2. If there exist in Π two priority filters π>(r,r′) and π>(r′′,r′′′) and also an associa-

tivity filter πL(R),πR(R), or πN(R) such that r′,r′′ ∈ R, then add the filter π>(r,r′′′)

to Π if it does not already exist.

3. If there exist in Π two left-associativity filters πL(R) and πL(R′) such that R∩

R′ 6= /0, then replace them in Π with πL(R ∪ R′), essentially combining two

left-associativity filters into one. Do analogously for right- and non-associativity

filters.

4. Repeat the previous steps until no more additions can be made.

The intuition behind MERGE-FILTERS(Π) is that it is natural to view priorities and

associativities as a partially ordered set of sets of operators. As such, steps 1 and 2

transitively close the priorities, and step 3 expands equivalence classes of associativities.

Finally, the function CONSISTENT(Π) simply checks that a set of filters is consistent. In

40

particular, it checks that (a) Π contains no cycle of priority filters such that π>(r,r′) and

π>(r′,r), and (b) Π contains no conflicting associativity filters πX(R) and πY (R′) such

that X 6= Y ∧R∩R′ 6= /0.

We are now ready to define our instantiation of A∗-search. A*-SEARCH(Π, t)

employs a graph search algorithm that in each iteration picks the candidate Π′ in its

frontier with minimum value of d(Π′)+ HEURISTIC(Π′, t), where d is a measure of

distance from the initial candidate. In our case the initial candidate is simply the existing

set of disambiguation filters Π from our session state. The distance metric d is a

weighted sum l +2r+3n+1.5p where l,r,n, p are the number of additional productions

in left-associativity, right-associativity, non-associativity, and priority filters, respectively.

Intuitively, this choice of coefficients encodes the fact that left-associativity is most

preferred, followed by priority, right-associativity, and non-associativity filters.

On every iteration, if the chosen candidate Π′ has heuristic score 0 we know it is a

possible disambiguation for our example and we add it to the set of solutions. Otherwise,

we add the successors of Π′ to our frontier and continue. Crucially, because the user may

reject a given candidate, A*-SEARCH returns a lazily computed sequence of solutions by

continuing to search for more candidates, even when a solution has already been found.

JRESOLVE(t)K(σ = (G,Π,M,w,C)) = (G,Π∪Π
′,M,w,C)

where Π′ is the first element of A*-SEARCH(Π, t) accepted by the user, otherwise /0.

3.3 Evaluation

We evaluate Parsify along two dimensions: (a) versatility: can Parsify handle

the complexities of a wide variety of languages from different language paradigms? and

(b) usability: how easy is the tool to use, and what are best practices to make usage

41

Table 3.1. Benchmark suite.

Language Paradigm Source LOC
Verilog Imp HLS tools 10,184
Tiger Imp/Func textbook 362
Apache [small] Ad-hoc online repo 1,546
SQL [small] Query census-postgres 1,492
Apache [big] Ad-hoc NASA 3.5M
SQL [big] Query census-postgres 228K

as effective as possible? To examine these questions, we ran several case studies in

which a co-author built several parsers from benchmarks drawn from different languages.

To demonstrate versatility, our chosen benchmarks come from different programming

paradigms and styles. Table 3.1 shows the different benchmarks for which we constructed

parsers. For each, we also list the language paradigm, the source of the benchmark, and

the number of lines of code. We divide our benchmarks into two sets: (a) the first 4,

which we call the breadth set, (b) and the last 2, much larger benchmarks, which we call

the depth set. During each case study, we used Parsify with examples drawn from the

breadth set to build a parser for the given language. Then, in the case for Apache and

SQL, the constructed parsers were applied to the the depth set, without modification, to

test for overfitting.

We now describe each of the languages in our benchmark set. Verilog is a popular

hardware description language used to define digital circuits. Our goal was to parse the

Verilog output of two high-level synthesis tools: Xilinx Vivado and C-to-Verilog, which

compile C code to Verilog. The benchmarks come from an unpublished suite. Tiger is

a textbook imperative language [4] with functional idioms (e.g., control statements as

expressions). Apache logs come from the Apache web server. The small dataset was

downloaded from an online repository [56], and the large dataset comes from a public

NASA repository [6]. Log entries encode the requesting server, requested URL, server

return code and size of the reply. Our goal was to perform a deep parse (e.g., parse

42

URLs fully by matching CGI parameters separately, rather than parsing URLs as opaque

strings). SQL is a ubiquitous database query language. We picked SQL because its

syntax is drastically different from above languages. The queries were mined from the

census-postgres open source project [12].

0 50 100 150 200 250 300

50%
63%
75%
88%
100%

0 50 100 150 200 250 300

50%
63%
75%
88%
100%

0 50 100 150 200 250 300

50%
63%
75%
88%
100%

0 50 100 150 200 250 300 350

50%
63%
75%
88%
100%

Figure 3.7. Progression plots for Verilog (top left), Tiger (top right), Apache Logs
(bottom left), and SQL (bottom right).

3.3.1 Versatility

We were able to build parsers to successfully parse 100% of each breadth bench-

mark. Additionally, with no modification to the parsers generated for Apache and SQL,

we were able to achieve 97% and 86% coverage, respectively, on the large Apache and

SQL benchmarks in our depth set. We measured coverage by splitting input files into

individual top-level entities (a single log entry for Apache, and a single query for SQL).

We then ran our inferred parsers against each entity. We report coverage as the number

of lines successfully parsed in this way.

To diagnose the lower coverage achieved for the SQL benchmark, we examined a

randomly sampled selection of code that failed to parse to determine the reason for failure.

In all cases, we determined that the cause for failure was the presence of a syntactic form

that did not exist in our smaller breadth sets. After allowing Parsify to learn on one more

43

example, we were able to achieve 97% coverage on the large SQL benchmark.

Language features across the four benchmarks included: for and while loops;

named records; function declarations and calls; conditionals (e.g., branches and switches);

regular expressions; and various unary, binary, and ternary arithmetic operators.

3.3.2 Usability

To understand the level of interaction required to build a parser, we use pro-

gression plots. A progression plot shows the cumulative progress made as a function

of number of UI actions taken. In particular, the x-axis of a progression plot shows

the number of actions taken, where an action is any single UI interaction: applying

a label, applying a negative label, resolving an ambiguity, undoing, or redoing. For

each x-value, a progression plot displays the cumulative progress: the percentage of

all the code in the project that is fully and successfully parsed after the first x actions.

To compute progress, rather than count the number of characters parsed, we count the

positions between characters that are part of some coloring. We do this for an important

reason: if we were to count characters, then suppose two separate colored regions (labels)

were directly adjacent. This would appear to achieve 100% when in fact a better parse

would encompass both. Figure 3.7 shows the progression plots for each of our breadth

benchmarks: Verilog, Tiger, Apache, and SQL. Note that we are able to build each of

these parsers with fewer than 400 UI interactions.

Completion Time

A second important metric is the amount of time taken to reach a solution. We

used Verilog as the first large case study, and not surprisingly it uncovered a variety of

bugs in the implementation of Parsify. As a result, our experiment with Verilog was

interspersed with several bug fixes and restarts, so we do not have an accurate measure of

44

how much time Verilog took. On the other hand, the parsers for Tiger, Apache and SQL

took between 6-8 hours. The author and his collaborators had prior experience building

manually written parsers for Verilog and Tiger: those prior efforts took nearly an order of

magnitude longer than the corresponding Parsify effort – in fact much of the inspiration

for Parsify is the wish to avoid previous difficulties.

To better understand where the time is spent when using Parsify, we analyzed

recordings of each case study. A particularly interesting observation is that in some

cases, an ambiguity was encountered that could not be resolved by synthesizing a

disambiguating filter. The only course of action was to undo several actions. Because

undo operations are counted as actions in our progression plots, these situations often

correspond to some of the “plateaus” we see in the progression plots, during which no

progress is made. After carefully analyzing the underlying reasons, we have formulated

several “best practice” guidelines for building parsers even more quickly by avoiding

these problems. Completion times were reduced significantly when following these

practices, with times ranging from 30 minutes to 2 hours for each of the 4 languages.

3.3.3 Best Practices

Build bottom-up

It is important to employ a bottom-up approach when building parsers with

Parsify. Consider two nonterminals, one of which always occurs higher in parse trees

than the other (e.g., stmt and expr, where stmt always occurs higher than expr). In this

case it is best to give as many examples as possible for expr, making it as complete as

possible, before moving to stmt. This ordering is preferable because it allows detection

and resolution of ambiguities earlier, on smaller examples, which makes it easier for both

the human and Parsify. For instance, consider a simple ambiguity that occurs on a small

expression when adding a new operator. This ambiguity is simple to visualize for the

45

user, and easy to resolve for Parsify because the search space is small. In contrast this

ambiguity becomes much more difficult to resolve if the ambiguity is discovered after

statements have been parsed, because the ambiguity could occur deeply nested in a large

statement. This not only makes the parse tree hard to visualize, but it also makes it harder

for Parsify to resolve, because the search space of possible disambiguations can be much

larger.

Consistency for Generalization

We have determined two “styles” for using Parsify’s generalization feature. Par-

sify works best when the user consistently uses one or the other, but not both, for the

same syntactic entity. Consider the simple example of parsing literal arrays: suppose

we have two arrays [a] and [a,b], where the expressions a and b have already been

correctly identified as exprs. There are two styles we can use, depending on whether we

use an intermediate nonterminal or not.

Style 1: don’t use an intermediate nonterminal for sequences. Apply label array

to [a] and [a,b], and Parsify generalizes the array rule to produce: “[”, followed by a

comma-separated list of exprs, followed by “]”.

Style 2: use an intermediate nonterminal for sequences. We start by applying

label eseq to both a,b and a, at which point Parsify generalizes the eseq rule to match a

comma-separated sequence of exprs. The two expressions we are trying to parse have

now been recolored and look as follows: [a] and [a,b]. At this point, we just need to

label one of these two expressions as array.

Both styles work individually, but Parsify does not generalize well when the two

styles are mixed for a given syntactic category (in the above example, arrays).

46

3.4 Acknowledgements

This chapter, in full, is adapted from material as it appears in Leung, Alan; Sar-

racino, John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings of

the 36th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, 2015. The dissertation author was the primary investigator and author on this

paper.

Chapter 4

Parsimony

In the previous chapter, we presented Parsify, our initial programming-by-example

(PBE) system for constructing parsers by example. Recall the three overarching design

principles of Parsify. First, we should minimize the amount of manual coding. Second,

the user should receive real-time feedback. Third, we should allow the user to quickly

iterate on designs. Despite the merits of this design philosophy and its embodiment

in Parsify, over the course of the dissertation author’s accumulated experience, several

limitations became apparent. This chapter addresses several of Parsify’s limitations

via new synthesis algorithms and their implementation in a second PBE system called

Parsimony. Here we enumerate these limitations and the key algorithmic insights for

overcoming each.

Lack of Lexer Capability

Despite the fact that lexical analysis is a key component of the parsing workflow,

Parsify had no ability to infer lexer definitions (i.e., named regular expressions). Thus, the

user either had to write a custom lexer prior to using Parsify, or hope that that Parsify’s

internally hardcoded lexer was sufficient.

Parsimony implements a new lexer synthesis engine that synthesizes lexer defini-

tions from example tokens. Our key insight is that there already exists a large corpus of

47

48

useful, curated regular expressions in the real world: the lexers for existing programming

languages. We frame the task of synthesizing lexers as the task of querying a data

structure called an R-DAG built from these existing lexers. In contrast to previously

known approaches to regular expression inference [3], our approach guarantees that any

synthesized rule will be realistic rather than synthetic, in the sense that it is known to be

useful in the context of a real-world language implementation.

Sensitivity to Order

Parsify was highly sensitive to the order in which the user presented examples

– the underlying algorithm employed a heuristic to decide the most likely candidate

production corresponding to a labeled example – unfortunately, this heuristic prematurely

threw away all but the highest scoring candidate from consideration, even when other

candidates might have been applicable. In cases where this heuristic was incorrect, the

user’s only path forward was, unintuitively, to first undo several steps, then present

examples in a different order so as to induce different heuristic decisions. The root cause

of this behavior was two-fold: (a) Parsify always synthesizes productions one example at

a time, thus enforcing a strict ordering on inference steps; and (b) after each inference,

Parsify cannot retain multiple candidates simultaneously.

To address this issue, we present a fresh perspective on a classical parsing al-

gorithm first described over 50 years ago, the Cocke-Younger-Kasami (CYK) parsing

algorithm [75]. We propose a novel graph data structure built from CYK tables called

the CYK automaton that efficiently keeps track of a large set of candidate productions,

rather than just one. Crucially, because the number of candidates can explode with

the length of the example, CYK automata efficiently encode an exponential number of

candidates with worst-case space only linear in the length of the example. In this setting,

we then frame synthesis as graph transformations on automata in which candidates are

49

only removed from consideration when no longer applicable, thus avoiding premature

loss of candidates. This formulation also provides a natural way to solve for multiple

user-labeled examples simultaneously: by composing multiple CYK automata, one for

each example.

Ad-hoc Generalization

Parsify had ad-hoc support for generalizing from instances of common patterns

such as unbounded repetitions (e.g., Kleene plus), but the mechanism was specialized for

repetitions, and it was not obvious how we might extend the approach to other important

patterns.

With Parsimony, we make the key insight that many design patterns can in fact

be encoded by specially constructed CYK automata. Detecting an instance of a design

pattern then reduces to a standard graph intersection between two CYK automata: one

representing the pattern and one representing the example. We demonstrate the generality

of this new approach by implementing the repetition patterns from Parsify and more

(such as recursively defined infix algebraic expressions), simply by defining a CYK

automaton for each pattern, along with a schema for the productions to generate based

on that pattern.

This chapter covers each of the key improvements described above. In addition,

we examine the utility of Parsimony over a wider audience: in contrast to the case study

approach presented in Chapter 3, we perform an evaluation of Parsimony’s effectiveness

via a controlled user study in which 18 programmers previously unfamiliar with Parsi-

mony were asked to complete a series of parser implementation tasks using experimental

and control variants of Parsimony. The results of that study are described in this chapter.

In summary, this chapter covers the following contributions:

1. We describe a lexer synthesis algorithm that converges on useful lexer definitions

50

with only a small number of examples.

2. We present a parser synthesis algorithm that frames synthesis as satisfaction of

constraint systems derived from user-provided examples; in this vein, we formalize

the notion of parser synthesis constraint systems, then define a novel data structure,

the CYK automaton, for efficiently solving these systems.

3. We present an extensible framework for detecting and generalizing from examples

of common parser design patterns, thus allowing for synthesis of tricky productions

that are correct by construction.

4. We present the results of a controlled user study in which 18 Computer Science

students, previously unfamiliar with Parsimony, were asked to complete two

realistic parser implementation projects using either Parsimony or a control variant

stripped of synthesis features. Our results show that Parsimony improves user

outcomes as measured by both time to completion and number of mistakes.

4.1 Overview

Parsimony’s user interface is shown in Figure 4.1. Its basic functionality includes

standard features ubiquitous amongst integrated development environments: (a) a cus-

tomizable workspace consisting of resizable panes and draggable tabs, (b) a file browser

for viewing and managing the contents of a project, and (c) text editors for viewing and

editing files. Parsimony also borrows the graphical features first shown in Parsify, such

as parse tree visualizations and live coloring of text files based on grammar changes.

Unique to Parsimony, however, are two tabs for interacting with the lexer and

parser synthesis engines:

51

Figure 4.1. The Parsimony user interface.

1. The Token Labels Tab allows the user to synthesize regular expressions and lexer

rules by providing example strings and their intended tokenization.

2. The Solver Tab provides rich functionality for synthesizing and previewing gram-

mar productions derived from strings labeled with syntactic categories (i.e., nonter-

minals).

A Parsimony session starts with a project containing a lexer definition file and

parser definition file (both of which start empty), and one or more sample text files

containing source code examples of the language being implemented. The user interacts

with the Token Labels Tab to add lexer rules to the lexer definition, interacts with the

Solver Tab to add productions to the parser definition, and iterates on the design until all

sample files parse correctly according to the user’s requirements. This iterative process is

guided by Parsify-style colored boxes (i.e., colorings), that Parsimony draws over text

editor panes to show current progress: as with Parsify, the size, shape, and placement of

these boxes indicate how much of the file is covered by the rules written so far.

In the remainder of this section, we illustrate the Parsimony workflow and its

salient features by walking through a series of scenarios demonstrating how we might

employ Parsimony to develop the lexer and parser for a toy language called Fuyu. A

52

sample Fuyu program is shown in Figure 4.2.

def a = 2; def alpha = a;
def gamma1 = (a+-88)^(a*0.3);
def Delta-2 = [1e12, 6.022e+23, 12.2E-10];

Figure 4.2. Sample of Fuyu source code: 1.fuyu.

4.1.1 Constructing the Lexer

To begin, we open the lexer definition fuyu.t and sample source 1.fuyu shown

at left and right in Figure 4.1, respectively. Since we have just started, fuyu.t is empty.

The goal will be to fill fuyu.t with lexer rules for tokenizing 1.fuyu.

Keywords

We start by synthesizing a lexer rule for the def keyword via following three steps:

(a) click the Token Labels Tab to activate it, (b) select the substring "def" in 1.fuyu, then

(c) add it as an example token by clicking the blue plus sign that appears. The Token

Labels Tab then updates its contents, as shown in Figure 4.3. In particular, the left-hand

drop-down shows the list of examples added (only one so far), and the right-hand side

shows a candidate rule that Parsimony has inferred from that example: DEF = def. This

rule meets our requirements, so we add it to our lexer definition by clicking the button

labeled Add to token definitions.

Figure 4.3. Token Labels Tab after adding the "def" example token.

53

Figure 4.4. Text editor after accepting inferred lexer rule DEF = def.

Figure 4.5. Legend after adding new lexer rule for DEF.

Parsimony immediately recompiles the lexer and colors 1.fuyu in response. The

coloring, shown in Figure 4.4, tells us two important facts.

First, the colored box surrounding "def" tells us that "def" matches the lexer rule

we just defined, as indicated by the Legend, shown in Figure 4.5. Just like a chart legend,

the Legend gives the correspondence between colors and names. Second, the red error

box tells us that no lexer rule yet matches the character "a". Intuitively, the error box’s

location tells us how far into the file the lexer was able to construct the token stream. To

fix this error, we will need to define a rule for identifiers like "a".

Identifiers

The DEF rule we have just defined is the simplest sort of rule – it matches ex-

actly the string "def", which seems easy enough to write by hand without needing to

synthesize it. Identifiers, however, are a more complex sort of token whose lexer rule

is correspondingly more challenging to specify. In particular, suppose our language

specification dictates that identifiers consist only of alphanumeric and hyphen characters;

additionally, the first character must be alphabetical. We want Parsimony to automatically

synthesize a lexer rule that meets that specification.

54

Figure 4.6. Token Labels Tab after adding five examples of the IDENT token.

We start by adding the example identifier "a" to the Token Labels Tab. Based on

this single example, Parsimony infers the candidate rule ALC = a, which is disappoint-

ingly specific: we are trying to “teach" Parsimony what identifiers look like, but one

example is simply not enough for Parsimony to make a good inference.

To ask Parsimony to infer a rule from a group of examples, rather than just one,

we can drag and drop multiple samples into their own folder. Shown in Figure 4.6 is a

folder labeled IDENT into which we have added five example identifiers; the right-hand

side of the figure shows that Parsimony has inferred two different candidate rules from

the examples contained in that folder.

To gain some intuition about the meaning of these rules, we can ask Parsimony to

show us some examples of strings matched by each rule. When we click the Example

Strings button, Parsimony updates the view with the strings shown in gray. It is clear

from them that the first rule permits the presence of underscores, which violates our spec-

ification. The second candidate rule, however, seems to be correct based on inspection

of the example strings and the rule’s definition, so we accept the inference. As before,

Parsimony recompiles the lexer and colors 1.fuyu.

At this point, based on the coloring we can proceed as before: synthesize a new

rule for the next failing token, which happens to be the "=" token. Since the basic scenario

55

is the same as for keywords, let us assume for the sake of exposition that lexer rules for

the remaining basic symbols (e.g., +,-,*,{}, etc.) have been defined in the remainder of

this section.

Numeric Literals

Numeric literals in Fuyu take the form of integers or floating point numbers

specified in decimal or scientific notation. The desired lexer should assign such literals

the token name NUMBER. Shown below are the six numeric literals from 1.fuyu.

2 -88 0.3 1e12 6.022e+23 12.2E-10

This is the most complex lexical form in Fuyu, and it would likely take a seasoned veteran

of lexical analysis to correctly implement its regular expression on the first try:

\-?(0|[1-9][0-9]*)(\.[0-9]+)?([Ee][+\-]?(0|[1-9][0-9]*))?

Parsimony synthesizes this regular expression from just those six examples. In fact, it

is the only candidate Parsimony chooses to show the user because there exists no other

expression of equivalent or better quality in its corpus of training data. Parsimony uses

a notion of quality based on how specifically the candidate matches the examples: for

instance, the regular expression .* also matches the examples, too, but it is clearly much

more general, and thus an inferior candidate – we define this notion of quality formally in

Section 4.2. After accepting the inference, our lexer is complete. 1.fuyu, with all tokens

properly colored, is shown in Figure 4.7.

Figure 4.7. 1.fuyu with all tokens properly colored.

56

4.1.2 Constructing the Parser

With lexer in hand, we proceed to the parser. In this section, we will successively

augment fuyu.g with productions for the various syntactic constructs of Fuyu.

Simple Assignments

We start the process by posing an example of an assignment statement. We do

this by (a) selecting "def a = 2;", (b) typing "assign" into the textbox that appears,

then (c) clicking the Solve button. The Solver Tab responds by presenting the following

stylized candidate production, depicted in Figure 4.8, that Parsimony has synthesized

from the example.

Figure 4.8. Candidate synthesized from one example.

The production is close to correct, but it has the token NUMBER hardcoded in the

fourth position, which precludes other kinds of non-numeric expressions. To fix this,

suppose we pose another example: "def alpha = a;". The Solver Tab now responds

with a pair of candidates, shown in Figure 4.9.

Figure 4.9. Candidates synthesized from two examples.

At this point, it should be clear that Parsimony needs to be taught that NUMBER

and IDENT are instances of a common syntactic category (nonterminal) representing

expressions: expr. To do this, we pose to the Solver both "2" and "a" as examples of

expr. The result is a set of three candidates, shown in Figure 4.10.

57

Figure 4.10. Candidates synthesized from four examples.

Figure 4.11. Parse tree visualizations.

The first two candidates match our expectation: to parse NUMBER and IDENT tokens

as expressions, add the two productions expr→ NUMBER and expr→ IDENT. The third

candidate has a special form. It indicates that the we can choose between two options for

the second position: either IDENT or expr. Parsimony gives us this option because it has

determined that either choice is consistent with the examples we have provided.

To help us make a decision, Parsimony shows us parse tree visualizations corre-

sponding to each option, as depicted in Figure 4.11. In particular, if we choose expr, we

will get the top parse tree. If we choose IDENT, we will get the bottom parse tree. Suppose

that according to our specification, only variable names (i.e., IDENT tokens), can appear

on the left hand side of an assignment. To achieve this, we choose the IDENT option

58

before accepting the solution. All our interactions with the Solver thus far have the net

effect of augmenting fuyu.g with the three productions expr→ NUMBER, expr→ IDENT,

and expr→ DEF IDENT EQ expr SEMI. Parsimony automatically recompiles the parser,

then colors 1.fuyu accordingly. The result is shown in Figure 4.12. Note that the first

two assignments are now surrounded by colored boxes corresponding to the nonterminal

assign.

Figure 4.12. 1.fuyu after accepting solution.

Algebraic Expressions

From the appearance of line 2, we know that our parser cannot yet handle

the right hand side of the assignment to gamma1, so we pose a new expr example:

"(a+-88)ˆ(a*0.3)". Because algebraic expressions are ubiquitous in programming

languages, Parsimony contains a powerful heuristic mechanism for detecting such syn-

tactic constructs. Based on this heuristic, Parsimony presents the user with a graphical

wizard that asks (a) if this is indeed an algebraic expression, (b) for each operator

(+,*,ˆ) whether that operator is left- or right-associative, and (c) what should be the

order of precedence for those operators. Based on the answers to these questions,

Parsimony constructs an idiomatic subgrammar for parsing expressions of this kind. Sup-

pose we answer using the standard mathematical order of operations. The synthesized

subgrammar then comprises four productions with associativity annotations: expr→

expr + expr {left}, expr → expr * expr {left}, expr → expr ˆ expr {right},

and expr→ (expr). Additionally, Parsimony synthesizes the following precedence an-

notation: priorities { expr → expr ˆ expr > expr → expr * expr ; expr → *

59

expr > expr → expr + expr ; }. Under the hood, these annotations compile to disam-

biguating filters that enforce a policy in the parser such that parse trees obey the specified

associativity and precedence hierarchy. Parsimony recolors 1.fuyu in accordance with

this new set of inferences. The result is shown in Figure 4.13.

Figure 4.13. 1.fuyu after accepting inferences for expr.

Array Literals

The last syntax left to handle is the array literal, shown on line 3. We pose "[1e12,

6.022e+23, 12.2E-10]" as an example of an array. Parsimony contains a built-in heuris-

tic to detect delimited repetitions, another ubiquitous language design pattern. Based on

this heuristic, Parsimony presents a graphical wizard confirming whether (a) each element

of the list is a NUMBER or expr, (b) the separator between elements is a comma, and (c) the

list is surrounded by a pair of square brackets. After confirming, Parsimony synthe-

sizes an idiomatic subgrammar for delimited lists of exprs: array→ [-array-inner],

-array-inner→ expr, -array-inner→ expr COMMA -array-inner.

Figure 4.14. 1.fuyu after accepting inferences for array.

The new coloring, shown in Figure 4.14, shows that the array literal parses

correctly. However, the parent assignment is still not surrounded by a box for assign.

The reason is that we never told Parsimony that an array literal is also a form of expr.

60

The fix is simple: we pose "[1e12, 6.022e+23, 12.2E-10]" as an example of

an expr, then accept the inference expr→ array, shown in Figure 4.15.

Figure 4.15. Inferred candidate expr→ array.

Fuyu Program

Finally, we define a start symbol for the parser. We simply pose the entirety of

1.fuyu as an example of a program. Parsimony detects that this is yet another example

of a ubiquitous pattern – this time, an undelimited list of assign instances. When we

confirm this inference, Parsimony generates two productions: program→ assign and

program→ assign program. Our parser is now complete.

4.2 Lexer Synthesis

In this section we formalize Parsimony’s algorithms for synthesizing lexers.

4.2.1 A Data Structure for Sets of Regular Expressions

In this section we describe our data structure, called an R-DAG, for representing

sets of regular expressions. The structure is designed to support efficient queries utilized

by our regex inference algorithm as described in Section 4.2.2.

R-DAG Definition

We first define R-DAG*, a partially ordered set (poset) with properties similar to

an R-DAG. We then define R-DAG via reduction from an R-DAG*.

Definition 1 (R-DAG*). An R-DAG* is a poset D∗ = (R,<∗) such that

1. R⊆R is a set of regexes,

61

2. <∗⊆ (R× R) is the language containment relation over R such that ∀r1,r2 ∈

R.L (r1)⊂L (r2)⇔ (r1,r2) ∈<∗,

3. R contains a designated regex >D such that L (>D) is the set of all strings, and

4. ∀r1,r2 ∈ R.L (r1) = L (r2)⇒ r1 = r2.

By 2 we have that r1 <
∗ r2 if and only if the language of r1 is strictly contained in

the language of r2. By 3 we have that R always has a topmost regex >D . By 4 we have

that R contains no two redundant regexes whose languages are identical. An R-DAG*

can be viewed equivalently as a directed acyclic graph such that R is its vertex set and

<∗ is its edge set. For ease of exposition we will view R-DAG*s as graphs or posets

interchangeably as is convenient in the sequel.

Definition 2 (R-DAG). Let D∗ = (R,<∗) be an R-DAG*. We define its corresponding

R-DAG D = (R,<) to be the transitive reduction of D∗. That is, D is the graph with the

same vertex set R as D∗, but with edge set <, the unique minimum size relation whose

transitive closure is <∗.

From a practical perspective, we can view an R-DAG as a database of regexes

such that the language containment relationship between regexes is stored explicitly in

the form of graph edges. Because of this structure, one may design graph algorithms

to efficiently answer questions of the sort “What is the most specific set of regexes that

match strings s1, s2, ...?" In this instance, “most specific" informally means that there

exists no other regex (in the database) with smaller language that could also match those

strings. We additionally would like this set to be the largest set with this property, so

we know we are not missing out. The notions of “most specific" and “largest" are made

formal in the following section.

62

4.2.2 Regular Expression Inference via R-DAG Queries

In this section, we define the HORIZON query on R-DAGs: the purpose of this

query is to discover the largest, yet most specific set of regexes that match a set of

example strings.

We start with some intuition. Suppose we have an R-DAG D = (R,<) and a string

s. First, we wish to find a set of regexes H ⊆ R such that every regex in H matches

s. Second, we require H to be succinct: no two regexes in H should be related by <∗.

Third, we require H to be as large as possible without compromising quality: adding

any regex would violate succinctness, and replacing any regex would make it worse

(i.e., closer to >D). These three conditions are captured by the notions of consistency,

succinctness, and maximality, defined formally here.

Definition 3 (Consistent). Let S be a set of strings. H is consistent with S iff ∀r ∈

H ,s ∈ S.s ∈L (r).

Definition 4 (Succinct). Let D = (R,<). H is succinct with respect to D iff ∀r,r′ ∈

H .r 6<∗ r′.

Definition 5 (Maximal). Let D = (R,<). Let S be a set of strings. H is maximal with

respect to (D ,S) iff no regex r ∈ R exists such that:

1. r /∈H ,

2. ∀s ∈ S.s ∈L (r), and

3. ∀r′ ∈H .(r <∗ r′ ∨ r′ 6<∗ r).

Definition 6 (Horizon). The set H is a horizon of (D ,S) iff H is consistent with S,

succinct with respect to D , and maximal with respect to (D ,S).

63

1: function HORIZON(D ,S)
2: W ←{>D} ; H ← /0
3: while |W |> 0 do
4: let r = removeAny(W)
5: let Rp = {r′ ∈ predecessors(D ,r) | ∀s ∈ S.s ∈L (r′)}
6: if

∣∣Rp
∣∣> 0 then

7: W ← (W − r)∪Rp
8: else
9: W ←W − r ; H ←H ∪{r}

10: end if
11: end while
12: return H
13: end function

Figure 4.16. The HORIZON algorithm.

We now define the query HORIZON(D ,S), which computes the horizon of (D ,S).

The algorithm is shown in Figure 4.16. Intuitively, HORIZON maintains a worklist W

of vertices to inspect. The worklist initially contains only >D , the topmost regex that

matches any string, and is thus guaranteed to be reachable from any other vertex of D . In

each iteration, we remove a regex r from the worklist and compute the set of predecessors

of r that match all strings in S. If such predecessors are found, we then add them to the

worklist and proceed to the next iteration. However, if no such predecessor exists, then

we have gone as far down the graph as possible (i.e., we have found the most specific

regex), so we add the current vertex to output set H . We continue this process until the

worklist is exhausted. At completion, H is a set of regexes that is consistent with S,

succinct with respect to D , and maximal with respect to (D ,S). In other words, it is the

horizon of (D ,S). Because each constituent regex is known to match every string in S, it

is a candidate for the body of a lexer rule for S. Because H is succinct with respect to D

and maximal with respect to (D ,S), we know there are no “better" candidates that we

have missed.

Theorem 1 (Consistency). HORIZON(D ,S) is consistent with S.

64

Proof. We first prove the following loop invariant: ∀r ∈W ,s ∈ S.s ∈L (r).

Base case

On loop entry, the worklist W contains only >D , which is guaranteed to match

all strings.

Inductive step

On each iteration of the loop, a regex is added to the worklist W (line 7) only if it

belongs to the set Rp. By construction, every member of Rp matches every string in S, as

guaranteed by the predicate ∀s ∈ S.s ∈L (r′) on line 5. Thus, the invariant holds after

each iteration.

Since every regex added to H (line 9) is drawn from W (line 4), our loop

invariant implies that every regex in H is guaranteed to match every string in S.

Lemma 1 (Descendant Matching). Let D = (R,<) be an R-DAG, s be a string, and r be

a regex in R. If s ∈L (r), then for every descendant r′ of r in D , s ∈L (r′).

Proof. For every descendant r′ of r, we have that r <∗ r′. By the definition of <∗,

L (r)⊂L (r′). Thus, if s ∈L (r) then s ∈L (r′).

Theorem 2 (Succinctness). HORIZON(D ,S) is succinct with respect to D .

Proof. Let H = HORIZON(D ,S). Suppose for contradiction that there exist r,r′ ∈H

such that r <∗ r′. Then there must exist a path p in D from r to r′ such that every vertex

in p matches s (Lemma 1). However, r′ could not have been added to H unless it

had no predecessors matching s (lines 5-6). This implies that p cannot exist, as p must

necessarily go through such a predecessor.

Theorem 3 (Maximality). HORIZON(D ,S) is maximal with respect to (D ,S).

65

Proof. Let D = (R,<) and H = HORIZON(D ,S). Assume for contradiction that there

exists r ∈ R such that

1. ∀s ∈ S.s ∈L (r) and

2. r /∈H ∧ ∀r′ ∈H .(r <∗ r′ ∨ r′ 6<∗ r).

There are two cases to consider:

1. r was excluded from H because at least one of its predecessors r′ also matches s.

If so, then some ancestor of r must exist in H , which contradicts assumption 2.

2. r was never inspected (i.e., never added to the worklist), which implies there exists

no matching path from >D to r. By assumption 1 and Lemma 1, however, such a

path must exist, which is a contradiction.

4.2.3 Example of Token Inference

To better illustrate the connection between R-DAGs and inference, we now show

a small example. Note that although the example we use employs only a small cor-

pus of regular expressions, the actual implementation of Parsimony utilizes an R-DAG

constructed from a much larger corpus of thousands of regular expressions.

Consider the set of lexer rules shown in Figure 4.17. To reduce verbosity and im-

prove readability, we have written the lexer rules such that a reference to a terminal name

represents a substitution of the terminal’s corresponding regex into the referencing body.

For example, HEX-LETTER | DEC-DIGIT is shorthand for the regex [a-f]|[0-9]. We

have also used the common syntactic shorthand [abc] that desugars to a|b|c, as well as

the shorthand . that represents a single instance of any symbol.

66

(TOP,.*)
(HEX-LETTER,[a-f])
(OCT-DIGIT,[0-7])
(DEC-DIGIT,[0-9])
(HEX-DIGIT, HEX-LETTER | DEC-DIGIT)

(OCTAL, 0 OCT-DIGIT*)
(DECIMAL, 0 | [1-9] DEC-DIGIT*)

(HEXADECIMAL, HEX-DIGIT*)
(FLOAT, -? DECIMAL (\. DEC-DIGIT+)? ([Ee][+-]? DECIMAL)?)

Figure 4.17. Lexer rules for constructing R-DAG.

The R-DAG constructed from this set of of lexer rules is shown in Figure 4.18.

For ease of visualization, we have labeled each vertex with the terminal name of the

regex rather than regex itself. From the figure, a few features are apparent. First, any two

elements connected by a path are also related by language containment. For example,

since OCT-DIGIT reaches FLOAT, we know that any string that matches the OCT-DIGIT

regex also matches the FLOAT regex. Second, the unique uppermost element of the

R-DAG is TOP. This corresponds to the designated element >D required by Definition 1.

TOP is reachable from every element of the R-DAG, as expected, since the TOP regex

matches any string. Notice, also, a particular quirk of this R-DAG: OCTAL is not an

ancestor of DECIMAL, even though intuitively, we might think that every octal string also

looks like a decimal string. This turns out not to be true in this particular case because

the OCTAL regex in fact always expects a 0 digit to appear as the first digit, whereas the

regex for DECIMAL also permits non-zero digits in that position.

Finally, Table 4.1 shows several examples of the horizons computed from sets of

example strings using this R-DAG.

67

hex-letter

oct-digit

dec-digit

hex-digit

octaldecimal

hexadecimalfloat

top

Figure 4.18. Example R-DAG constructed from lexer rules shown in Figure 4.17.

Table 4.1. Example HORIZON queries.

Example Strings Horizon
"0" OCT-DIGIT, OCTAL

"5" OCT-DIGIT

"8" DEC-DIGIT

"a" HEX-LETTER

"x" TOP

"-1.2" FLOAT

"1e12" FLOAT, HEXADECIMAL

"0" "5" OCT-DIGIT

"0" "5" "8" DEC-DIGIT

"0" "5" "8" "a" HEX-DIGIT

"1e12" "a" HEXADECIMAL

"1e12" "-1.2" FLOAT

4.3 Parser Synthesis

In this section we formalize Parsimony’s algorithms for synthesizing parsers. We

begin with a preliminary overview of CYK parsing.

68

4.3.1 Preliminaries: CYK Parsing Algorithm

The Cocke-Younger-Kasami (CYK) parsing algorithm [75] is a dynamic pro-

gramming algorithm for computing whether a string τ is a member of the language of a

grammar G. In other words, it computes whether τ has a full derivation with respect to G.

The crucial distinguishing feature of the CYK algorithm is that the algorithm constructs a

two-dimensional table M that records, for every substring τ ′ of τ , the set of nonterminals

that derive τ ′. The algorithm is shown in Figure 4.19.

We describe the CYK algorithm informally here. We build M from smaller

substrings of τ up to larger ones. For each substring of length 1 at each index i, (i.e.,

single tokens), we check whether some nonterminal A derives that token in a single step

via a unit rule of form A→ a. If so, we add A to the set at table element Mi,1. We do this

for every such nonterminal. Having examined every substring of length 1, we proceed to

those of length l = 2: for each length 2 substring τ ′ at each index j, we check whether

some nonterminal A′ derives τ ′ in a single step via a rule of the form A′→ BC. To do

this, we try to split τ ′ into a prefix and suffix such that M contains B for the prefix and

C for the suffix. If we find such a split, we add A′ to the set at table element M j,l . We

iterate this procedure for every nonterminal and for each value of l from 2 up to |τ|. At

termination, each element of M is a (possibly empty) set of nonterminals that derive the

corresponding substring of τ:

A ∈Mi,l ⇐⇒ A⇒∗ τ[i...i+l] (4.1)

To determine membership of τ in L (G), we simply check whether M0,|τ| contains the

start symbol of G. One important remark is that the algorithm makes use of a function

CNF(G) that we have not defined. The CYK algorithm as described requires the grammar

on which it operates to be in Chomsky normal form (CNF): every production must

69

either be of the form A→ a or A→ BC. Well-known algorithms exist for converting any

context-free grammar to CNF [26], so we omit the details here and simply take as a given

that we have access to the function CNF(G) that takes an arbitrary context-free grammar

G and returns its CNF conversion.

1: function CYK(G,τ)
2: let (·, ·,P, ·) = CNF(G)
3: for i in [0,|τ|) do
4: Mi,1 =

{
A | A→ a ∈ P ∧ τ[i] = a

}
5: end for
6: for l in [2,|τ|] do
7: for j in [0,|τ|− l] do
8: M j,l = {A | ∃ k.A→ BC ∈ P
9: ∧B ∈M j,k

10: ∧C ∈M j+k,l−k}
11: end for
12: end for
13: return M
14: end function

Figure 4.19. The CYK algorithm.

4.3.2 Parser Synthesis Constraint Systems

In this section, we make precise the parser synthesis problem by framing it as

satisfaction of constraints over labeled strings.

Definition 7 (Parser Synthesis Constraint System). A parser synthesis constraint system

is a tuple C= (G,F,L) where

1. G is a grammar,

2. F= {τ f1,τ f2, ...,τ fk} is a set of strings called files with unique labels f1, f2, ..., fk

called file names, and

3. L is a set of parse constraints of form 〈A, i, l〉 f denoting a length l selection starting

at index i into file τ f ∈ F labeled with nonterminal A.

70

Let the notation G]P mean the grammar G augmented with additional produc-

tions P. A solution to constraint system C is a set of productions P that satisfies the

formula:

∀〈A, i, l〉 f ∈ L. M = CYK
(

G]P,τ f
[i...i+l]

)
∧A ∈Mi,l

If P satisfies the above formula, we say P satisfies C. Intuitively, then, the parser

synthesis problem is the task of finding P, a set of productions that allow us to derive

every constrained substring encoded by L.

Trivial Solutions

Note that there always exist trivial solutions to any parser synthesis constraint

system: for every constraint 〈A, i, l〉 f ∈ L generate the production A→ τ[i...i+l]. In other

words, simply use each sequence of selected terminals as the production body. However,

such a solution is usually unprofitable, in the sense that it is unlikely to be the user’s

intention. In the following sections, we describe our mechanism for finding non-trivial

solutions.

4.3.3 A Data Structure for Sets of Candidate Productions

In this section we describe the CYK automaton, a data structure for efficiently rep-

resenting large sets of candidate productions. This data structure is a central component

of Parsimony’s parser synthesis engine.

Intuition

Intuitively, a CYK table is simply a static record of the nonterminals that derive

each piece of a string τ being parsed. For example, M2,5 is the set of nonterminals that

derive the substring τ[2...7]. However, this is only one interpretation of the table. An

71

alternate perspective is that the table contains predictions about the set of productions

that we might add to our grammar to grow the language. Consider, for instance, that

we have the string ab and grammar with productions A→ a and B→ b. We would then

have CYK table M such that M0,1 = {A}, M1,1 = {B}, and M0,2 = /0. Suppose that we

wish for ab to also belong to the language we are designing. What production should

we add to make it so? The CYK table has almost all the information we need to answer

that question. We could combine one element of M0,1 with one element of M1,1 to create

the sentential form AB. If we add the production S→ AB, we will have augmented the

language to include exactly the string ab. Note, however, that there are other productions

we could have added instead: S→ aB, S→ Ab, or S→ ab. Even in this trivial case, we

see that there can be many such candidate productions. A CYK automaton is a data

structure for making explicit what the candidates are and for providing efficient queries

to compute those candidates.

Definition 8 (CYK Automaton). A CYK automaton is a directed graph

Y = (I,E, i0, I f ,U,Λ) where I ⊆Z∗ is a set of vertices, E ⊆ I× I is a set of edges, i0 ∈ I is

a designated start vertex, I f ⊆ I is a designated set of final vertices, U is a set of symbols,

and Λ is a map from edges in E to sets of symbols in U . We use the notation Λ[e 7→ X]

for the map λx. if x = e then X else Λ(x).

Given a grammar G and string τ , we construct a CYK automaton via algorithm

BUILD-CYK-AUTOMATON, shown in Figure 4.20. Intuitively, each vertex of a CYK

automaton corresponds to a position between tokens (e.g., 1 indicates the position between

the 0th and 1st token). An edge between vertices j and k corresponds to the CYK table

entry M j,k− j: that is, the set of nonterminals of G that derive the substring τ[j...k]. This set

is recorded via map entry Λ(j,k). Additionally, for every singleton edge (j, j+1) (i.e.,

those that correspond to length 1 substrings), we also add to Λ the terminal τ[j] occurring

72

1: function BUILD-CYK-AUTOMATON(G,τ, i0, i f)
2: let (N,Σ, ·, ·) = G
3: let M = CYK(G,τ)
4: (I,E,Λ)← ({0≤ i≤|τ|}, /0,λx. /0)
5: for i in

[
i0, i f −1

)
do

6: E← E ∪{(i, i+1)}
7: Λ← Λ[(i, i+1) 7→ {τ[i]}]
8: end for
9:

10: for i in
[
i0, i f

)
do

11: for l in
[
1, i f − i

]
do

12: if Mi,l 6= /0 then
13: E← E ∪{(i, i+ l)}
14: Λ← Λ[(i, i+ l) 7→ Λ(i, i+ l)∪Mi,l]
15: end if
16: end for
17: end for
18: return (I,E, i0,{i f },N∪Σ,Λ)
19: end function

Figure 4.20. The BUILD-CYK-AUTOMATON algorithm.

at that position. By construction, any path between vertex 0 and vertex |τ| corresponds to

a set of sentential forms that derive τ . That is, for a path p = i0, i1, ..., in such that i0 is

the start vertex and in is a final vertex, its set of corresponding sentential forms is given

by the n-ary Cartesian product

Λ(i0, i1)×Λ(i1, i2)× ...×Λ(in−1, in) (4.2)

4.3.4 Parser Synthesis via CYK Automata

In this section, we progress through several descriptions of successively more

sophisticated mechanisms for solving parser synthesis constraint systems via CYK

automata, building from simple cases up to more complex cases. We motivate each

augmentation with an example demonstrating the limitation it overcomes. At the end

of this section, we will have arrived at the full algorithm used by Parsimony, dubbed

73

PARSYNTH-FULL.

Case 1: A Single Parse Constraint

We first consider synthesis constraint systems with only one parse constraint. Let

us revisit the example from Section 4.3.3, in which we have the string ab, a partially

implemented grammar G1 with productions A→ a and B→ b, but wish for ab to derive

from a new nonterminal S that has yet to be implemented. As we saw in Section 4.1,

to do this using Parsimony we simply highlight the text ab, type the label S into the

textbox that appears, then press the Solve button. Under the hood, this sequence of user

operations constructs the following parser synthesis constraint system:

C1 = (G1,F1,L1)

F1 = {ab f1}

L1 = {〈S,0,2〉 f1}

To solve this constraint system, our strategy will be to construct a CYK automaton for

the parse constraint in L1, then generate productions corresponding to the shortest path

through the automaton. Specifically, we construct the automaton for constraint 〈S,0,2〉 f1

with parameters τ = ab, i0 = 0, I f = {2}:

0 1
{A, a} {B, b}

2

The shortest (and only) path is 0,1,2. Taking the n-ary Cartesian product of edge

attributes along the path, as defined in (4.2), we have Λ(0,1)×Λ(1,2) =

{A,a}×{B,b}= {(A,B),(A,b),(a,B),(a,b)}.

74

S	
 a	
 b	

A	
 B	

S ! ab

S ! AB

S ! aB

S ! Ab

Figure 4.21. Candidate matrix SJ{a,A}{b,B}K.

Each constituent tuple, when read from left to right, is the body of a production for S

that derives ab. That is, any such production is a solution to C1. Given the options, the

question is “which solution should we choose?" In the absence of more information,

Parsimony cannot answer this question. Rather than make an arbitrary choice, Parsimony

displays all the possibilities and leaves the choice to the user.

Candidate Matrices

To succinctly represent a potentially large space of choices, Parsimony uses a

graphical representation called a candidate matrix, an example of which is shown in

Figure 4.21.

The semantics of a candidate matrix is straightforward: the kth column of the

matrix shows all the symbols that may possibly occur at position k in the corresponding

production body. The user must enable exactly one such symbol per column. The

sequence of enabled symbols, when read from left to right, gives us the corresponding

production. A candidate matrix succinctly visualizes a potentially large set of productions

that grows exponentially in the number of columns: a candidate matrix with k columns

and n symbols per column encodes nk productions. We denote by XJN1 N2 ...NkK the

candidate matrix with k columns such that N j is the set of symbols in column j, and

X is the left-hand side symbol. Figure 4.21 explicitly enumerates the four productions

encoded by the 2-column candidate matrix SJ{a,A}{b,B}K.

Each production encoded by a candidate matrix M is called a valuation of M. To

75

1: function PARSYNTH/
1(C)

2: let (G,{τ f },{〈A, i, l〉 f }) = C
3: let Y = BUILD-CYK-AUTOMATON(G,τ f , i, i+ l)
4: return ΨA

Λ
(SHORTEST-PATH(Y, i, i+ l))

5: end function

Figure 4.22. The PARSYNTH/
1 algorithm.

construct candidate matrices, we define the following constructor function ΨX
Λ

, which

given a path through a CYK automaton, constructs the corresponding candidate matrix

as follows:

Ψ
X
Λ(i0, ..., in) = XJΛ(i0, i1) ...Λ(in−1, in)K

We additionally define the following enumeration function ENUM, which given a candi-

date matrix M, returns the set of all valuations of M= XJN jKn
j=0:

ENUM(M) = {X → x0x1...xn | (x0,x1, ...,xn) ∈ N0×N1× ...×Nn}

Algorithm PARSYNTH/
1

The algorithm just sketched, called PARSYNTH/
1, is shown in Figure 4.22. The

primary lines of interest are lines 3-4 in which we construct a CYK automaton Y then

construct and return the candidate matrix corresponding to the shortest path through Y .

Case 2: Non-Overlapping Parse Constraints

Algorithm PARSYNTH/
1 can only handle constraint systems with a single parse

constraint. As a first step towards generalizing our algorithm to handle multiple con-

straints, we consider the simplest case in which no two parse constraints overlap. Two

parse constraints 〈A, i, l〉 f and 〈B, j,k〉 f ′ overlap when

(
f = f ′

)
∧
(
{m | i≤ m < i+ l}∩{n | j ≤ n < j+ k} 6= /0

)

76

1: function PARSYNTH/
2(C)

2: let (G,{τ f j}n
j=0,L) = C

3: M̃← /0
4: for 〈A, i, l〉 fk ∈ L do
5: let Y = BUILD-CYK-AUTOMATON(G,τ fk , i, i+ l)
6: let M= ΨA

Λ
(SHORTEST-PATH(Y, i, i+ l))

7: M̃← M̃∪{M}
8: end for
9: return M̃

10: end function

Figure 4.23. The PARSYNTH/
2 algorithm.

where f = f ′ stipulates that both constraints reference the same file, and the second

conjunct stipulates that both constraints reference some of the same indices into that file.

A straightforward approach to handle this more general case is to construct more

than one candidate matrix – in particular, one per parse constraint. The revised algorithm,

PARSYNTH/
2, appears in Figure 4.23. Note that on line 7 we accumulate each additional

candidate matrix, then return the entire set M̃ on line 9.

Example

Suppose we have the following constraint system C2, which models a grammar

where identifiers id and numbers 1 are forms of expressions E, and the user has selected

and labeled two substrings "id= id" and "id= 1" with the nonterminal S (statements).

The synthesis task is to infer one or more productions for S.

C2 = (G2,F2,L2)

G2 = ({E,S},{id,1,=},{E→ id,E→ 1},S)

F2 = {id= id f1,id= 1 f2}

L2 = {〈S,0,3〉 f1 ,〈S,0,3〉 f2}

77

PARSYNTH/
2(C2) = {M1,M2}
M1 = SJ{E,id}{=}{E,id}K
M2 = SJ{E,id}{=}{E,1}K

S	
 E	
 =	

id	

E	

id	

S	
 E	
 =	

id	

E	

1	

Figure 4.24. Solution to C2 via PARSYNTH/
2.

The computed solution is shown in Figure 4.24, where we have depicted M1 and

M2 textually at top and visually at bottom. In this situation, Parsimony would display

both candidate matrices in the Solver Tab and allow the user to interact with each. There

are two problems in this scenario: (a) Since the user provided parse constraints for only

one kind of syntactic construct (namely, statements S), it may be confusing for the user

to see two distinct candidate matrices when only one was expected, and (b) it may lead

the user to accept a solution of two productions (one for M1 and one for M2), which is

subpar because the more economical solution to C2 consists of only a single production:

namely S→ id= E. Clearly, our algorithm needs to be improved to handle such cases

and avoid computing more candidate matrices than necessary.

Case 3: Non-Overlapping Parse Constraints with Sharing

As we have just seen, M1 and M2 in Figure 4.24 are redundant – we need only

one of the two since both share the desired valuation S→ id = E. To eliminate such

redundancies, our strategy is to find a way to partition the constraints L2 into disjoint

sets, called classes, such that the constraints in each class can be satisfied by the same

productions. By producing as few classes as we can, then computing only a single

candidate matrix for each such class, we seek to produce an economical solution. To do

78

this we will first need to define an operation for the intersection of two CYK automata.

Definition 9 (CYK Automaton Intersection). Let Y = (I,E, i0, I f ,U,Λ) and

Y ′ = (I′,E ′, i′0, I
′
f ,U

′,Λ′). The intersection of Y and Y ′, written Y ∩̃ Y ′, is defined as

follows:

Y ∩̃ Y ′ = (I× I′,E∩,(i0, i′0), I f × I′f ,Λ
∩)

Λ
∩ = λ

(
(x,x′),(y,y′)

)
.Λ
(
(x,y)

)
∩Λ
′ ((x′,y′))

E∗ =
{(

(x,x′),(y,y′)
)
| (x,y) ∈ E ∧ (x′,y′) ∈ E ′

}
E∩ =

{
e ∈ E∗ | Λ∩ (e) 6= /0

}
We say Y and Y ′ are compatible, written COMPATIBLE(Y,Y ′), iff the intersection Y ∩̃ Y ′

contains a path from start vertex (i0, i′0) to final vertex i f ∈ I f × I′f .

Intersection of CYK automata is similar to the standard product construction

for intersection of finite automata; however, we additionally intersect edge attributes

such that each resulting edge attribute is the set of symbols shared by both originating

edges. With this construction, any path through the intersection Y ∩̃ Y ′ corresponds to a

common set of sentential forms shared by both Y and Y ′. If ¬COMPATIBLE(Y,Y ′), then

there exists no such shared sentential form.

Partitioning

Our partitioning algorithm is shown in Figure 4.25. We describe the algorithm

informally here.

We first compute for each parse constraint a tuple (A,Y) where A is the nontermi-

nal of the constraint, and Y is the CYK automaton constructed from that constraint. This

set of tuples, denoted Y, serves as the input to PARTITION. We then iteratively intersect

automata until no more intersection is possible. In each iteration, we greedily intersect

79

only the highest scoring pair of automata, where our scoring function SCOREY gives

preference to the pair that is maximally compatible with all the other automata. The idea

is to intersect those pairs whose intersection has the most opportunity to intersect again

in a future iteration. At termination, the output of PARTITION should be a set Y′ such

that
∣∣Y′∣∣ ≤|Y|, and each constituent tuple (A′,Y ′) ∈ Y′ contains a CYK automaton Y ′

that is possibly the intersection of multiple automata from the original input Y. Most

importantly, any path in Y ′ from start to final vertex gives us a solution to all the parse

constraints that gave rise to Y ′. In other words, each element of Y′ corresponds to the

class of parse constraints that it solves.

For illustration, consider the constraint system C2 from Case 2. The CYK au-

tomata before and after partitioning are shown in Figure 4.26, where Y1 and Y2 correspond

to the two constraints in L2, and Y12 is the intersection of Y1 and Y2 due to partitioning.

The revised algorithm, PARSYNTH/
3, is shown in Figure 4.27. The main revision

from PARSYNTH/
2 is that we first partition the set of automata on line 7 before constructing

candidate matrices from them.

The computed solution PARSYNTH/
3(C2) is

{M3}=
{

SJ{E,id}{=}{E}K
}
.

There are two key features of this solution to note. First, there is only one candidate

matrix, not two as with PARSYNTH/
2. Second, the last column of M3 contains only E,

not id or 1, because id and 1 were excluded from edge ((2,2),(3,3)) in Y12 during

intersection. The two possible valuations of M3 are S→ E = E and S→ id= E. In fact,

these are the only possibilities: there exists no other single production that would also

satisfy C2. In this sense, this computed solution is as good as possible.

80

1: function PARTITION(Y)
2: let ays= {((A1,Y1),(A2,Y2)) | ((A1,Y1),(A2,Y2)) ∈ Y2∧
3: A1 = A2 ∧ COMPATIBLE(Y1,Y2)}
4: if (ays 6= /0) then
5: let (ay1,ay2) = first(sortDescBy(SCOREY,ays))
6: let ((A1,Y1),(A2,Y2)) = (ay1,ay2)
7: let Y12 = Y1 ∩̃ Y2
8: return PARTITION(Y−{ay1,ay2}∪{(A1,Y12)})
9: else return Y

10: end if
11: end function
12:
13: function SCOREY((A1,Y1),(A2,Y2))
14: if (A1 6= A2) then return 0
15: end if
16: return ∑

(A3,Y3)∈Y s.t. A3=A1

SCORE-ONE-TRIPLET(Y1,Y2,Y3)

17: end function
18:
19: function SCORE-ONE-TRIPLET(Y1,Y2,Y3)
20: if (COMPATIBLE(Y1,Y3) ∧ COMPATIBLE(Y2,Y3) ∧ COMPATIBLE(Y1 ∩̃ Y2,Y3))

then
21: return 1
22: else return 0
23: end if
24: end function

Figure 4.25. The PARTITION algorithm. Y is a set of pairs (A,Y) where Y is a CYK
automaton and A is its corresponding nonterminal.

Case 4: Overlapping Parse Constraints

An additional complication occurs when constraints are permitted to overlap.

Suppose we have the following constraint system C4, which represents a situation in

which we have the same grammar G2 as before, but the user has created overlapping

81

0 1 3 2
{=}{E, id} {E, id}

{E, 1}
0 1 3 2

{=}{E, id}

1,1 3,3 2,2
{=}{E, id} {E}

0,0

Y1 =

Y2 =

Y12 =

before partitioning

after partitioning

Figure 4.26. Before and after partitioning CYK automata for C2.

1: function PARSYNTH/
3(C)

2: let (G,{τ f j}n
j=0,L) = C

3: Y← /0
4: for 〈A, i, l〉 fk ∈ L do
5: Y← Y∪{(A,BUILD-CYK-AUTOMATON(G,τ fk , i, i+ l))}
6: end for
7: for (A,Y = (·, ·, i0,{i f }, ·,Λ)) ∈ PARTITION(Y) do
8: let M= ΨA

Λ
(SHORTEST-PATH(Y, i0, i f))

9: M̃← M̃∪{M}
10: end for
11: return M̃
12: end function

Figure 4.27. The PARSYNTH/
3 algorithm.

parse constraints like so: id=id+id

S

E

.

C4 = (G4,F4,L4)

G4 = G2

F4 = {id= id+id f1}

L4 = {〈S,0,5〉 f1,〈E,2,3〉 f1}

The user’s intention is to specify that the enclosing context id=id+id is an

82

example of a statement S, and that nested within it id+id is an example of an expression

E. Unfortunately, PARSYNTH/
3 ignores this nested relationship:

PARSYNTH/
3(C4) = {M4,M5}

M4 = SJ{E,id}{=}{E,id}{+}{E,id}K

M5 = EJ{E,id}{+}{E,id}K

To see the problem, examine the CYK automaton corresponding to M4 (ignore

the dotted edge for now):

0 1 5 2
{=}{E, id}

3 4
{E, id} {E, id}{+}

{E}

The subpath 2,3,4,5 corresponds to the substring id+id that the user has constrained

with nonterminal E, but the automaton ignores that constraint and faithfully retains

the underlying CYK table information for edges (2,3), (3,4), and (4,5). Thus, the

synthesized candidate matrix M4 is overly specific and contains columns corresponding

to those edges.

Our strategy is to replace such subpaths with summary edges that summarize the

effect of nested constraints. For example, we replace the subpath 2,3,4,5 with a single

edge (2,5) whose edge attribute {E} references the nonterminal of the nested constraint.

The dotted edge (2,5) is such a summary edge. After this transformation, the revised

candidate matrix M′4 = SJ{E,id}{=}{E}K correctly encodes only those productions

where the right hand side of the assignment statement S must be an expression E. The

candidate matrix M5 remains untouched. Together, M′4 and M5 represent a solution of

two interrelated productions (one for E and one for S that references E). For example,

83

1: function PARSYNTH/
4(C)

2: for (A,Y = (·, ·, i0,{i f }, ·,Λ)) ∈ PARTITION(APPLY-NESTING(C)) do
3: let M= ΨA

Λ
(SHORTEST-PATH(Y, i0, i f))

4: M̃← M̃∪{M}
5: end for
6: return M̃
7: end function

Figure 4.28. The PARSYNTH/
4 algorithm.

1: function APPLY-NESTING(C)
2: let (G,{τ f j}n

j=0,L) = C
3: Y← /0
4: for L = 〈A, i, l〉 fk ∈ L do
5: let L′ = {L′ ∈ L | L contains L′}
6: Y ← BUILD-CYK-AUTOMATON(G,τ fk , i, i+ l)
7: for L′ ∈ L′ do
8: Y ← SUMMARIZE(Y,L′)
9: end for

10: Y← Y∪{(A,Y)}
11: end for
12: return Y
13: end function

Figure 4.29. The APPLY-NESTING algorithm. SUMMARIZE takes an automaton and
parse constraint and returns the automaton with constrained paths replaced by a summary
edge.

one possible valuation for M′4 and M5 is S→ id= E and E→ E +E.

The revised algorithm PARSYNTH/
4, which incorporates summarization, is shown

in Figure 4.28. The key revision is the call to APPLY-NESTING on line 2 that takes

as input constraint system C and returns a set Y with summary edges inserted. The

implementation of APPLY-NESTING is shown in Figure 4.29.

84

Case 5a: Constrained Patterns – Lists

Consider the constraint system C5, which models the scenario in which the user

has selected and labeled the string [1;id;1] with the nonterminal A (arrays).

C5 = (G5,F5,L5)

G5 = ({E},{[,],;,1,id},{E→ 1,E→ id},E)

F5 = {[1;id;1] f1}

L5 = {〈A,0,7〉 f1}

Plausibly, the user’s intention is that the constrained substring is an example of literal

array syntax permitting repetition of the elements within square brackets. However, the

solution PARSYNTH/
4(C5) simply hardcodes the fact that the literal array must contain

exactly 3 elements: PARSYNTH/
4(C5) =

{M6}=
{

AJ{[}{E,1}{;}{E,id}{;}{E,1}{]}K
}

Our strategy for handling this case is two-fold. First, we detect instances of

common grammar design patterns using the machinery for intersection of CYK automata.

Second, for each pattern we predefine carefully crafted schema for productions; the

schema contain holes to be instantiated with symbols that have been resolved during

pattern detection.

Pattern Detection

Suppose Y6 is the CYK automaton, shown below, from which we computed M6.

0 1 2 3 4
{[} {]}{E, 1}

5 6 7
{E, 1}{E, id}{;} {;}

85

We wish to detect whether Y6 represents an enclosed, delimited repetition: that is, the

repetition of two or more instances of a symbol, each separated by a delimiter symbol,

and surrounded by a matching pair of enclosing symbols. Our key insight is that it is

possible to precisely specify such a pattern with a specially constructed CYK automaton

Y •edlist:

0 1 5 2 3 4 Ndelim NelemN
open

N
close

Nelem

Nelem

where Nopen,Nclose,Nelem,and Ndelim are sets of opening enclosers, closing enclosers,

element symbols, and delimiter symbols, respectively. We set Nopen and Nclose to stati-

cally predefined values for common encloser terminals ([],(),{}), while we set Nelem

and Ndelim to be the vocabulary and terminals of the current grammar, respectively.

Then, to detect whether Y6 matches the pattern, we simply intersect Y6 and Y •edlist. If

COMPATIBLE(Y6,Y •edlist), then we have detected a match.

The intersection Y6 ∩̃ Y •edlist is shown below, where edges corresponding to array

elements (Nelem) are bold, and edges corresponding to delimiters (Ndelim) are dashed.

0,0 1,1 2,2 3,3 4,2
{[} {]}{E, 1}

5,3 6,4 7,5
{E, 1}{E, id}{;} {;}

The set intersection of all dashed edge attributes is {;} and gives us the set of possible

delimiters N∩delim. Analogously, the set intersection of all bolded edge attributes is {E}

and gives us the set of possible elements N∩elem. Finally, the first and last edge attributes

are {[} and {]}, which give us the sets of possible open and closing enclosers N∩open and

N∩close.

86

Schema Instantiation

The last step is to instantiate productions. Parsimony contains the following pre-

defined schema, named P•edlist, for enclosed, delimited lists, where each hole (subscripted

•) is a placeholder to be instantiated by a nonterminal or terminal, and Afresh is a fresh

nonterminal.

P•edlist =


•lhs→•open Afresh •close

Afresh→•elem

Afresh→•elem •delim Afresh


The valid instantiations for each placeholder are restricted to the symbols (edge attributes)

captured during intersection:

•open ∈ N∩open •close ∈ N∩close •elem ∈ N∩elem •delim ∈ N∩delim

Additionally, •lhs is a special placeholder instantiated with A, the nonterminal from the

originating parse constraint 〈A,0,7〉 f1 . Fully instantiated, our solution is

{
A→ [Afresh] , Afresh→ E , Afresh→ E;Afresh

}
As already discussed in Section 4.1, Parsimony’s interface for pattern detection

and schema instantiation comes in the form of a wizard in the Solver Tab – the user can

graphically select instantiations for each hole or reject the inference altogether if the

detected pattern is spurious. Parsimony also implements pattern detection and schema

instantiation for undelimited lists and unenclosed lists. In each case, we simply define a

CYK automaton paired with a corresponding production schema. Their specification is

similar in principle to that already shown, so we omit their details here and defer their

treatment to Appendix B. We encapsulate list pattern detection and schema instantiation

87

in procedure LIST-HEURISTIC(Y), which returns a tuple (P,L) where P is a set of

instantiated production schemas (i.e., a set of productions), and L is the set of originating

parse constraints.

Case 5b: Constrained Patterns - Algebraic Expressions

We now describe a more complex instantiation of our pattern framework: alge-

braic expressions. The core approach is the same as for list patterns: we define a CYK

automaton that encodes the pattern, then specify schema with placeholders to be filled by

symbols captured during pattern matching. The pattern automaton Y •expr is shown below.

Y •expr =
0 1 2 3

4 5 6 7

8 9 11 10 Nelem N
op

N
open

N
close

Nelem Nelem

Nelem

Nelem Nelem

N
op

N
op

N
op

N
op

N
open

N
open

N
close

N
close

N
op

The sets Nopen, Nclose, and Nelem are defined the same as for list patterns. Nop is a

statically predefined set of common binary operator terminals (+,-,*,/, etc.). Together,

Y •expr encodes the shape of algebraic expressions with at most one level of parenthetical

nesting (e.g., "a+b", "1*(2+3)", or "(1/2)").

To detect an instance of the pattern, as before, we compute the intersection of

Y •expr with respect to the automaton being matched. The sets N∩open,N
∩
close, and N∩elem are

computed, as before, via set intersection of all corresponding edge attributes. However,

the set N∪op is instead computed via set union, not set intersection, of corresponding edge

attributes. The result is that N∪op contains the set of all plausible binary operator terminals

88

seen during pattern matching. Finally, the production schema P•expr is shown below:

P•expr =

∀? ∈ N∪op . •elem→•elem ? •elem

•elem→•open •elem •close


The special form ∀? ∈ N∪op . •elem → •elem ? •elem instantiates to multiple productions:

one production per binary operator as captured by N∪op. The result is that an instantiation

of P•expr contains a production for each detected binary operator.

Consider the following constraint system, which models the scenario in which

the user has selected and labeled the substring 1+id*(1/id) with the nonterminal E

(expressions).

C6 = (G6,F6,L6)

G6 = ({E},{(,),1,id,+,*,/},{E→ 1,E→ id},E)

F6 = {1+id *(1/id) f1}

L6 = {〈E,0,9〉 f1}

Suppose Y7 is the CYK automaton computed from the parse constraint 〈E,0,9〉 f1 . Then

the intersection Y7 ∩̃ Y •expr is

0,0 1,1 2,2 3,3 4,2
{E, 1}

5,6 6,7

{E, id}

9,3
{E, 1} {E, id}

{+} {*}

{/}

{(}

{)}
7,6 8,7

where the intersection of bolded edge attributes is N∩elem = {E}, the union of dashed

edge attributes is Nop = {+,*,/}, and the normally drawn edges give us N∩open = {(} and

N∩close = {)}.

89

The instantiation of P•expr with these parameters is

{E→ E+E , E→ E*E , E→ E/E , E→ (E)}

which indeed satisfies C6. Notice, however, that this solution is somewhat unsatisfactory:

the resulting grammar is ambiguous because it fails to specify the relative associativities

and precedences with respect to the binary operators. To handle this situation, we

additionally query the user for information necessary to resolve the ambiguity. In

particular, a graphical wizard asks the user (a) to assign an associativity to each operator,

and (b) to rank those operators by their precedence. From these user responses, we

construct a set of disambiguating filters that resolve the ambiguities with respect to those

operators:

1. For each left-associative (resp. right-associative) set O of operators with equal

precedence rank, instantiate schema left{ ∀? ∈ O. •elem→•elem ?•elem } (resp.

right{ ∀? ∈ O. •elem→ •elem ?•elem }) that permits only derivations respecting

the specified associativity.

2. For each set Ohigh of precedence rank i and set Olow of precedence rank i− 1,

instantiate schema

priorities { ∀? ∈ Ohigh,?
′ ∈ Olow.

•elem→•elem ?•elem > •elem→•elem ?′ •elem }

that permits only derivations respecting the specified precedence relationship.

We encapsulate the described expression pattern detection and schema instantiation

in procedure EXPR-HEURISTIC(Y), which returns a 3-tuple (P,Π,L) where P is an

90

instantiated set of production schemas (i.e., a set of productions), Π is an instantiated set

of disambiguating filters, and L is the set of parse constraints from which they derive.

The Algorithm PARSYNTH-FULL

The parser synthesis algorithm, PARSYNTH-FULL, is shown in Figure 4.30. We

make three key modifications from PARSYNTH/
4. First, we repeatedly attempt to match

patterns (lines 3-21), accumulating all instantiated productions and disambiguation filters

until no more matches are found. Second, instead of returning just a set of candidate

matrices, we return a 3-tuple (G′,Π′,M̃) containing the modified grammar, instantiated

disambiguating filters, and computed candidate matrices. Finally, we perform two

passes of the loop on lines 25-28. With almost no additional machinery, this tweak

provides the advantage that solutions computed in the second pass can take advantage

of those produced by the first. In particular, the operation G′]̃M̃ on line 23 inserts

into G′ productions equivalent to the EBNF form X → (A1|...|Am)...(Z1|...|Zn) for each

candidate matrix XJ{A1, ...,Am}, ...,{Z1, ...,Zn}K in M̃. To see why this is valuable, recall

Section 4.1.2, in which we synthesized the following candidate matrices:

exprJ{IDENT}K

exprJ{NUMBER}K

assignJ{DEF}{expr,IDENT}{EQ}{expr}{SEMI}K

The underlined nonterminal expr is computed in the second pass by making use of the

candidate production expr→ IDENT, which was computed in the first pass.

91

1: function PARSYNTH-FULL(C= (G,F,L))
2: G′← G ; L′← L ; Π′← /0 ; M̃← /0 ; change?← true
3: while change? do
4: Y← PARTITION(APPLY-NESTING((G′,F,L′)))
5: let (P,L′′) = LIST-HEURISTIC(Y)
6: if P 6= /0 then
7: G′← G′]P
8: L′← L′−L′′
9: change?← true

10: continue
11: end if
12: let (P,Π,L′′) = EXPR-HEURISTIC(Y)
13: if P 6= /0 then
14: G′← G′]P
15: Π′←Π′∪Π

16: L′← L′−L′′
17: change?← true
18: continue
19: end if
20: change?← false
21: end while
22: for i in [0,1] do
23: Y← PARTITION(APPLY-NESTING((G′]̃M̃,F,L′)))
24: M̃← /0
25: for (A,Y = (·, ·, i0,{i f }, ·,Λ)) ∈ Y do
26: let M= ΨA

Λ
(SHORTEST-PATH(Y, i0, i f))

27: M̃← M̃∪{M}
28: end for
29: end for
30: return (G′,Π′,M̃)
31: end function

Figure 4.30. The PARSYNTH-FULL algorithm.

4.4 Implementation

We have implemented Parsimony as a web application consisting of a graphical

frontend, implemented primarily in ClojureScript, that communicates with a backend

server implemented in Clojure and Java. The complete implementation consists of ~38K

92

lines of code. We describe the salient features of our implementation here.

4.4.1 Backend Design

The backend’s primary purpose is to service HORIZON requests in response to

user interaction with the Token Labels Tab. In particular, every time the user adds an

example token string, the backend receives a request to compute a new horizon with

respect to the newly added string. If the user has modified a folder (e.g., by adding

or removing a string), the backend receives a HORIZON query for the set all strings

belonging to the folder. The result of each query is used directly to update the set of

candidate lexer rules presented to the user. All queries operate on an R-DAG that we

precompute offline.

Offline R-DAG Construction

To precompute the R-DAG, we scrape all patterns contained in a corpus of 81

existing lexer implementations provided in the ANTLR project’s open-source grammar

repository [24]. We use the BRICS finite-state automata library [16] to compile all com-

patible regexes (a total of 3018 unique regexes), then compute the language containment

relation <∗ by exhaustively querying BRICS whether L (a1) ⊂L (a2) for every pair

a1,a2 of compiled automata. To ensure the existence of >D , we seed the corpus a priori

with the regex .* that matches all strings. To remove redundant regexes, we additionally

query BRICS whether L (a1) = L (a2); when such a pair is found, we simply discard

one of the two from the corpus. The resulting regexes form the vertex set of an R-DAG∗

with corresponding edge set given by the <∗ relation just computed. Finally, we compute

the transitive reduction of this R-DAG∗ using the algorithm of Aho et al. for transitive

reduction via adjacency matrix multiplication [1].

93

4.4.2 Frontend Design

In addition to all graphical portions of Parsimony, the frontend contains (a) an

implementation of the CYK algorithm, including CNF conversion, (b) a library for

constructing parse forests from CYK tables, including implementation of disambiguating

filters, and (c) an implementation of the PARSYNTH-FULL algorithm, including utilities

for construction and manipulation of CYK automata.

User Interactions

Every time the user executes the Solver, Parsimony constructs a parser synthesis

constraint system consisting of (a) the current grammar, (b) all unsatisfied parse con-

straints the user has provided via textual selections, and (c) all files in the current project.

Parsimony then executes PARSYNTH-FULL on the constructed constraint system, pausing

for user interaction whenever required for forward progress. In particular, Parsimony

requests user input for one of two reasons:

1. To request instantiations of schema placeholders during heuristic pattern matching.

2. To request the selection of valuations for each computed candidate matrix.

In both cases, Parsimony allows the user to preview the result of her choices by visualizing

the parse forest underlying the relevant parse constraints. In this way, the user can better

understand the impact of each choice before committing. After the user accepts all

candidates, Parsimony inserts the relevant productions and disambiguating filters into the

project’s syntax specification, stored as a file with .g extension.

4.5 Evaluation

To evaluate the effectiveness of Parsimony, we conducted a user study in which

18 participants without previous experience using Parsimony were asked to complete a

94

series of tasks using one of two interfaces: either Parsimony with all its features enabled,

or a stripped-down version with no synthesis or visualization features at all.

4.5.1 Hypotheses

We test the following hypotheses:

1. Hypothesis 1. Parsimony helps users construct parsers more quickly than with a

traditional parsing workflow.

2. Hypothesis 2. Parsimony leads users to make fewer mistakes than with a traditional

parsing workflow.

4.5.2 Participants

We targeted our user study at programmers who had some familiarity with parsing,

but who were not experts. Computer Science students were recruited by an open call to

internal student mailing lists within the UCSD Computer Science Department. The only

requirement for participation was previous experience writing a parser, whether through

classwork or personal use. We additionally asked respondents to self-rate their level of

proficiency writing parsers, for the purpose of excluding respondents with high expertise.

Our final sample pool consisted of 18 Computer Science students (9 undergraduate and 9

graduate) who were split by random assignment into a control group and an experimental

group, each with 9 students. The control group consisted of 5 undergraduates and 4

graduate students, with the experimental group containing the remainder.

4.5.3 Interface Differences

The interface seen by the experimental group consisted of all features described

in this paper: The Token Labels Tab and Solver Tab, along with parse tree visualizations

and colorings. The interface seen by the control group had none of these features, but did

95

retain the tabbed workspace, file browser, and text editors. Due to the lack of synthesis

features, control participants had to manually code their definitions via text editor. The

interface additionally provided buttons to compile and run these definitions – any errors

were reported in a textual console (e.g., “Syntax error on line 1, found foo but expected

bar"). The control interface was designed to closely model a traditional parsing workflow

in which the user employs a text editor and relies on command-line compiler feedback.

4.5.4 Methodology

Both the control and experimental groups were first asked to read a brief introduc-

tion. Participants were then given a tutorial project to introduce them to the basic features

of the interface. The content of this tutorial was tailored to the particular interface that

the participant would see (either control or experimental), although the actual parsing

and lexing tasks in each tutorial were the same.

After completing the tutorial, participants were given up to 2 hours to complete

two projects asking them to implement lexers and parsers for two toy languages designed

specifically for the experiment. We chose to use synthetic toy languages in order to

minimize bias that might stem from participants’ previous familiarity with existing

languages – although synthetic, these languages were designed to contain syntactic

constructs that occur commonly in real languages, such as literal primitives and data

structures, loops, branches, and various statements.

The first project comprised a sequence of 7 focused tasks that together imple-

mented the lexer and parser for the Fuyu language introduced in Section 4.1. Each of the

seven tasks asked the student to implement a single syntactic construct of the language

in isolation (e.g., keyword, numeric literal, expression, or statement). In order to finish

a task, participants ran a battery of tests (provided by us) to determine whether their

solution was correct. Participants were not allowed to proceed to the next task until these

96

tests passed.

The second project consisted of two open-ended tasks in which users were asked

to develop the parser for a toy language called Hachiya. These tasks were significantly

more open-ended, as the participant was given a large sample source file and asked to

implement the parser without any prescribed order. The project was not deemed complete

until the participant’s solution passed the provided tests.

After completing the experiment, participants were given a survey asking them to

rate various aspects of their experience via 5-point Likert scales. They were additionally

given an opportunity to provide open-ended feedback.

4.5.5 Quantitative Results

We discuss our quantitative results with respect to the two hypotheses.

Hypothesis 1

Based on our measurements, we find that Parsimony significantly improves the

speed at which users are able to construct parsers. To show this, we describe two related

measures of time-based participant performance: average time to completion per task,

and total progress made. We discuss total progress first.

Figure 4.31 shows the number of participants able to complete each task, with

tasks ordered sequentially from first to last. In the experimental condition, five par-

ticipants were able to progress through all 9 tasks in the time allotted. In the control

condition, only two participants were able to complete all tasks. The drop-off in the

control condition begins at task 4, which was one of the more complex tasks, as it

involved construction of a grammar for mathematical expressions built from variables

and literals. Indeed, our measurements show that control participants took on average

nearly 45 minutes to complete this task, while participants in our experimental group

97

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

#	

Co

m
pl
et
ed

	

Task	

Control	

Experimental	

Figure 4.31. Number of participants completing each task.

took only half that time. By contrast, the drop-off in the experimental group begins much

later at task 7 – in fact, all experimental group participants were able to complete the

entirety of the Fuyu project.

Figure 4.32 shows average time to completion for each task. We average across

only those users who successfully completed that task. The figure shows that Parsimony

either matches, or significantly improves performance in the three most difficult tasks in

the Fuyu project: 2, 4, and 5. Task 2 asked users to construct a lexer rule for numeric

literals (recall the motivating example from Section 4.1). Task 4, as already mentioned,

asked users to write productions for algebraic expressions. Finally, task 5 asked users to

write productions for literal arrays that may contain an unbounded number of elements.

In all three cases, control participants took at least twice as long to complete the task.

We do note, however, that our results appear to show no significant speed advantage

with Parsimony in tasks 8 and 9 – the averages for those tasks are biased toward the

control group because they contain only the highest-performing minority from the control

condition, compared against a larger group from the experimental condition.

98

0	

10	

20	

30	

40	

50	

60	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

M
in
ut
es
	

Task	

Control	

Experimental	

Figure 4.32. Average time to completion in minutes. Breakdown by task. Error bars
show standard error.

Hypothesis 2

Based on our measurements, we find that Parsimony also significantly reduces the

number of mistakes made by users. We measure two kinds of mistakes: compile errors,

which occur when the participant specifies a bad rule that causes a compile failure; and

reasoning errors, which occur when the participant specifies a rule, then later modifies

or removes it. We additionally break these results down by the type of task performed:

lexing tasks, which comprised the first three tasks in the Fuyu project, and parsing tasks,

which were the remainder of the tasks.

Lexing Tasks: Compile Errors

Figure 4.33 shows the per-user average number of compile errors encountered

during each of the three lexer tasks – in all three tasks, the experimental group significantly

outperformed the control group. Additionally, note that both groups encountered the most

compile errors in the first task, which likely stems from the fact that participants had just

99

0	

1	

2	

3	

4	

5	

6	

7	

8	

1	
 2	
 3	

Er
ro
rs
	

Task	

Control	

Experimental	

Figure 4.33. Average lexer compile errors per participant. Breakdown by task. Error
bars show standard error.

finished the tutorial and were still getting used to the interface. Even so, the experimental

group saw fewer than half as many compile errors as the control group in the first task,

indicating that it was easier for participants to grow accustomed to Parsimony.

Lexing Tasks: Reasoning Errors

Next, we discuss reasoning errors. To measure reasoning errors, we recorded

every lexer rule written by the participant. We call this the cumulative lexer rule set Clex.

We also recorded the set of lexer rules that appeared in the participant’s final answer.

We call this the final lexer rule set Flex. The ratio |Clex|/|Flex| approximates the amount

of churn: how much the participant had to edit and massage their result in response to

errors in reasoning. The experimental group produced an average churn ratio of 1.2 while

the control group saw a ratio of 3.1. In other words, the control group kept only 32%

of rules and threw away more than two-thirds of attempted rules. By comparison, the

experimental group kept nearly 81% of attempted rules.

100

0	

2	

4	

6	

8	

10	

12	

syntax	
 seman0c	

Er
ro
rs
	

Error	
 Type	

Control	

Experimental	

Figure 4.34. Average parser compile errors per participant. Breakdown by type. Error
bars show standard error.

Parsing Tasks: Compile Errors

Figure 4.35 shows the per-user average number of compile errors encountered

during each of the six parser tasks – again, the experimental group significantly outper-

formed the control group. To more finely distinguish the contributing factors for this

trend, we additionally classify these errors into two different bins: syntax errors and

semantic errors. The average breakdown per participant is shown in Figure 4.34. Syntax

errors are self-explanatory. Semantic errors occur when the compiler fails a semantic

check, which occur when (a) the user specifies a production that references an undefined

symbol or introduces a non-productive cycle (i.e., groups of productions that permit

infinite derivation), or (b) the user specifies disambiguating filters that are inconsistent

with one another (e.g., the same production is both left and right associative). We see a

significant reduction in both syntax and semantic errors, indicating that Parsimony helps

users not only avoid simple errors, such as typos, but also helps them reason about the

relationships between productions to avoid conceptual mistakes.

101

0	

2	

4	

6	

8	

10	

12	

4	
 5	
 6	
 7	
 8	
 9	

Er
ro
rs
	

Task	

Control	

Experimental	

Figure 4.35. Average parser compile errors per participant. Breakdown by task. Error
bars show standard error.

Parsing Tasks: Reasoning Errors

To measure reasoning errors in parsing tasks, we use a similar methodology to

that for lexer errors. We recorded production sets Cparse and Fparse for each participant,

which contained every production written by the participant and every production in

the participant’s final answer, respectively. The ratio
∣∣Cparse

∣∣/∣∣Fparse
∣∣ is the parser churn

ratio, analogous to the lexer churn ratio. In the experimental condition, the average churn

ratio was 1.31, which tells us that participants kept a large majority (76%) of attempted

productions in their final answer. The churn ratio of the control group was significantly

higher at 1.99, indicating that nearly half of all productions they wrote were eventually

discarded.

4.5.6 Qualitative Results

We now discuss the qualitative results gathered from our exit surveys. User

responses were uniformly positive across all metrics.

102

Numerical User Responses

The exit survey contained a series of Likert scale questions on a scale of 1-5, with

5 being most affirmative. The results are summarized in Table 4.2. The first six questions

were only given to the experimental group, as they reference features only visible in

the experimental interface. The purpose of these questions was to get feedback on the

usefulness of each feature of Parsimony individually. In order, the questions asked if

the following were useful: (a) the colorings applied to text editors, (b) the parse tree

visualizations, (c) the Token Labels Tab for synthesizing lexer rules, (d) the Solver for

synthesizing productions, (e) the heuristic pattern detection for sequence-like constructs,

and (f) the heuristic pattern detection for algebraic expressions. The last three questions

were given to both groups for the purpose of comparing responses between groups. In

order, these questions asked (g) if the tool was useful overall, (h) if the tool was easier

to use than software they had previously used to construct parsers, and (i) if they would

recommend the tool to others. Answers to questions (a)-(f) were uniformly positive, with

the average rating for each above 4.5. In other words, users seemed to agree that every

feature of Parsimony was valuable. Responses to questions (g)-(i) show that participants

in the experimental group seemed to favor Parsimony more than those of the control

group, across all three metrics.

Other Responses

Participants were also asked to provide general comments on their most negative

and positive impressions of the tool. We summarize a few of the most common sentiments

expressed by participants in the experimental group.

103

Table 4.2. Numerical user responses to exit survey. Higher is better. E and C correspond
to the experimental and control group, respectively.

Question E C
(a) Coloring 4.78 n/a
(b) Live Parse View 4.67 n/a
(c) Token Labels Tab 4.56 n/a
(d) Solver 4.78 n/a
(e) Sequence Heuristic 4.56 n/a
(f) Expression Heuristic 4.67 n/a
(g) Overall 4.78 4.00
(h) Easier to Use 4.56 4.00
(i) Recommend to Others 4.78 4.00

Speed and ease of development

Six of the participants mentioned that they liked most the speed and ease of

development. One participant, for instance, wrote that the “tool took three week’s worth

of work into three hours.”

High-level focus

Five participants mentioned that they enjoyed that Parsimony seems to eliminate

much of the detailed work involved in writing a parser, thus allowing them to focus on

high-level design instead. For example, one participant wrote that he could “focus on the

high level or overall organization of the language rather than on the brute force aspect.”

Quality of feedback

Four participants stated that they thought highly of the strong feedback loop and

the quality of the feedback. A participant wrote, “The graphical representation was much

better/faster feedback than normal tools.” Another wrote, “Animations with visual tree

and colors helped me understand what was happening very easily.”

Participants also mentioned several areas for improvement. These tended to focus

on various usability problems with the interface.

104

Organization

Three participants mentioned that they thought the organization of the user

interface was confusing, especially with regard to the dichotomy between the Token

Labels Tab and Solver Tab. One participant wrote that “lexing and parsing examples

could have a single UI.”

Graphical Undo

Five participants mentioned that they would have liked to see a way to graphically

remove or undo inferences, instead of having to delete them using the text editor: “It

would be better to rename or remove some parser rules graphically.”

Keyboard Shortcuts

Three participants suggested that the process would have been much smoother

if they had access to more keyboard shortcuts for performing common operations. One

participant lamented the “lack of [a] hotkey for addition of selected text to [the] Token

Labels Tab."

4.6 Acknowledgements

This chapter, in full, is adapted from material currently being prepared for sub-

mission for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for Example-

Guided Synthesis of Lexers and Parsers.” The dissertation author was the primary investi-

gator and author on this paper.

Chapter 5

Related Work

5.1 Program Synthesis

The topic of program synthesis [37] focuses on the problem of inferring a program

from specifications. Such specifications can take many forms, such as input/output

examples [27], logical constraints [68], or even partial reference implementations [67].

We focus here on example-based synthesis, into which the work of this dissertation falls.

Programming-by-Example

The class of algorithms for program synthesis via input/output examples is

broadly termed programming-by-example (PBE) [13, 28, 48, 61]. Some of the earliest

examples of PBE systems focused on inference of simple Lisp programs from example

executions [47, 65]. More recently, programming-by-example has become re-energized

by the promise to give non-expert users the ability to generate useful programs: a

primary benefit of PBE systems is that when successfully realized, they reduce the

amount of domain knowledge required to produce a relatively complex computational

artifact. In general, this level of interaction is achieved by deep domain-specific insights

on the part of the algorithm designers. Examples of such proposed programming-by-

example techniques include synthesis of string transformations [5, 27, 51], spreadsheet

manipulations [7, 29], input specifications for fuzzers [8], number transformations [66],

105

106

and data extraction from unstructured or semi-structured inputs [44]. One particularly

relevant instantiation of PBE is the PADS system [18, 19, 20] for automatically inferring

the structure of ad-hoc data formats such as log files. In contrast to our system, PADS

makes several simplifying assumptions about its inputs due to its focus on ad-hoc formats:

for example, their system assumes that log entries are chunked line-by-line or file-by-file,

and that format specifications are not recursive. As a result it is unclear whether their

techniques can generalize to context-free languages.

Interactive Graphical Program Synthesis

Some program synthesis systems have a visual component similar to our own.

For example, LAUNCHPADS [14] is the visual frontend for the PADS system described

above. Much like Parsify and Parsimony, LAUNCHPADS provides an interface into

which a user highlights various regions of a sample file according to the type of data

contained within. However, the system is essentially a visual system for performing edits

to PADS specifications and does not provide access to example-based inference features.

The LAPIS [54] and SMARTedit [42] systems support repetitive edits by example, but

do not export any hierarchical structure from the underlying text, as their aim is to aid

repetitive text editing tasks, not to produce structured output. The STEPS [74] system also

provides a facility for highlighting and labeling regions similar to Parsify and Parsimony,

but with the narrower aim of facilitating more limited text transformations akin to that

accomplished by “a short Perl/AWK script.” In all cases, the key feature that distinguishes

our work from previous work on visual program synthesis environments is the broader

scope of the task: parsers for full context-free languages that are capable of producing

meaningfully structured parse trees.

107

Version Space Algebra

The CYK automaton-based formulation of constraint satisfaction presented in

Chapter 4 is inspired by the notion of version space algebras [43], in which the space of

possible solutions (the hypothesis space) is encoded by a special structure called a version

space. By composing version spaces representing individual examples, we produce a

set of hypotheses consistent with the set of examples provided. This formulation was

developed as an extension to Mitchell’s original version space framework [55] in concert

with the development of the SMARTedit [41] system described above. In our setting, a

CYK automaton represents a hypothesis space consisting of a set of possible productions.

Intersection of such automata produces a new hypothesis space that remains consistent

with the given parse constraints.

5.2 Grammatical Inference

The topic of grammatical inference [15, 72], broadly focused on the challenge

of inferring latent structure from text, has been studied extensively for decades. The

classical problem, termed identification in the limit [23], is concerned with the ability

to infer a correct language specification given a set of positive and negative examples

(strings inside and outside the language, respectively). Inference of probabilistic syntactic

rules for natural languages [34, 71], as studied by computational linguists, is a well

known field of study within this genre. In non-probabilistic settings, steady progress has

been made on inferring language specifications for regular languages [3, 58], reversible

languages [2], reversible context-free grammars with structural descriptions [62], and

even context-free languages [45, 60]. We distinguish ourselves from this line of prior

work in two ways: (a) prior work focuses more on the theoretical problem of correct

grammar inference, whereas we focus on practical techniques that scale to software

108

engineering problems; and (b) the ability in prior work to infer some grammar, does not

mean the inferred grammar is meaningful to a human engineer: the parser developer

also has an expectation that the corresponding syntax trees are easily comprehensible. In

particular, a recent survey [38] found known efforts to apply grammatical inference to

programming language parsers [17, 52] to be limited in nature, and it remains unclear

whether these techniques scale to nontrivial software engineering problems. The second

limitation points to the need for tools, such as those described in this dissertation, that

allow more fine-grained control of the form of inferred productions.

5.3 Parsing

The literature on parsing and its applications is enormous, spanning several

decades. We focus here on work towards making parsing more user-friendly: parsing

algorithms for easier syntax specification, and algorithms for analyzing, debugging, and

testing parsers.

Recent work [46] has employed natural-language processing to generate parsers

from English descriptions of input formats. Generalized parsers of the GLL [35, 64]

and GLR [70] families have recently gained popularity due to their ability to accept

any context-free grammar, in contrast to well-known parser families such as LR(k) [40]

whose difficulties are well-studied [36], due in large part to the restricted form of its

grammars. Advances in this line of research have led to the development of generalized

parser generators that offer high performance, such as the Elkhound [50] parser generator.

Unfortunately, the ability to specify ambiguous grammars remains a significant disadvan-

tage in comparison to parser generators based on more restricted grammars. More so,

many such parsers offer no mechanism for disambiguation besides refactoring produc-

tions. Disambiguating filters [39, 69] offer a declarative mechanism for disambiguation

without modifications to the grammar. This is the disambiguation approach taken by the

109

work of this dissertation.

Another line of research focuses on tooling and analyses for detecting problems

in existing syntax specifications. For example, significant work has gone into the de-

velopment of techniques for detecting ambiguities statically [9, 11, 63]. However, no

sound and complete method can exist, as detecting ambiguity in context-free grammars

is undecidable in general [31]. To get around this issue, tools make use of additional

information such as example parse trees [10], or restrict themselves to a particular subset

of grammars, such as LALR [33]. The work described above can be seen as complemen-

tary to the work presented in this dissertation: Parsify and Parsimony focus primarily on

methods for aiding developers to construct parsers, whereas the methods described above

focus on aiding developers to mend existing parsers.

5.4 Acknowledgements

This chapter, in part, is adapted from material as it appears in Leung, Alan;

Sarracino, John; Lerner, Sorin. “Interactive Parser Synthesis by Example,” Proceedings

of the 36th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, 2015. The dissertation author was the primary investigator and author on this

paper.

This chapter, in part, is adapted from material currently being prepared for

submission for publication. Leung, Alan; Lerner, Sorin. “Parsimony: An IDE for

Example-Guided Synthesis of Lexers and Parsers.” The dissertation author was the

primary investigator and author on this paper.

Chapter 6

Conclusion

Parsing is a ubiquitous programming task that remains a challenge for non-expert

programmers. In this dissertation, we have presented two systems in support of our

thesis that it is possible to make writing parsers easier through a combination of program

synthesis and visual feedback. In Chapter 3, we presented Parsify, our first system for

synthesizing parsers by example. The primary interaction model of Parsify is that of

the input/output example – the user provides labeled textual selections, and the system

infers productions that satisfy the intent of the labels. We provided evidence of Parsify’s

effectiveness by performing a series of case studies demonstrating that it is possible to

construct useful parsers using Parsify. In Chapter 4, we identified three limitations of

Parsify, namely its lack of lexing support, its inability to learn from multiple examples,

and its use of ad-hoc generalization. We then presented Parsimony, which addressed

Parsify’s limitations with additional capabilities for lexer inference, multiple-example

learning, and parametric heuristic pattern detection. Finally, we presented the results of a

controlled user study with non-expert programmers, which showed that Parsimony does

indeed help users write parsers more quickly and with fewer mistakes.

We close by mentioning avenues for future research. A natural extension of this

work follows from considering that a parser is generally only the first part of a much

larger workflow. One important, and also non-trivial task, is that of transforming concrete

110

111

parse trees, as generated by a parser, into abstract syntax trees that have been stripped

of their syntactic sugar and any semantically unimportant bits (e.g., punctuation). For

parser generators that allow it, the traditional way of performing this transformation is to

write code inline in the syntax specification (so-called semantic actions) that perform this

transformation at parse time. As with any non-trivial programming task, this is prone

to error. It also conflates the task of language specification (e.g., the grammar) with the

task of program translation. A fresh take on this task could be to view this as yet another

instance of a synthesis problem: given example concrete parse trees and their abstract

syntax counterparts, can one synthesize the program that performs this transformation?

Although some work has already been done on synthesizing tree transformations on

hierarchical structures [73], perhaps domain-specific insights from parsing theory can

provide for additional expressivity and more efficient inference while still keeping the

task tractable.

Another avenue for future work presents itself when we consider that, for a

development environment to be useful, it must be compatible with the downstream

consumers of its outputs. For whatever reason, it may be the case that a developer must

have an LALR grammar due to external constraints. In this more restricted setting, it

would be interesting to discover how far synthesis can aid in translating grammars to this

more restricted form, and how much of the groundwork laid in this dissertation can be

extended to that setting.

Finally, consider that much of a parser’s development lifecycle is spent in mainte-

nance. Once constructed, unless quite trivial the parser will likely require changes over

its lifetime. Program synthesis techniques have already shown progress in the domain

of patch generation for imperative programs [49]. Perhaps it would be fruitful to view

refactoring of parsers in a similar light?

Appendix A

CYK-based Coloring

This appendix describes the modified coloring algorithm used by Parsimony. The

primary benefit of this algorithm is its easy integration with an existing CYK parser –

simply compute colorings at parse time – because the algorithm exploits similar optimal

substructure to that of the CYK algorithm: an optimal coloring is the composition of

optimal subcolorings.

The algorithm is defined in Figure A.1. We describe the algorithm informally

here. Let τ be a string on which we wish to compute a coloring, and M be a CYK

table computed from τ . Assume we have optimal colorings for all substrings of τ .

First, we check M0,|τ| for a non-empty entry. If so, then that means the entire string

is derivable from nonterminals in M0,|τ|, so we just construct a coloring directly from

the table elements and return. If not, then that means the string is not derivable from

any nonterminal of the grammar. Instead, we attempt to construct a new coloring by

splitting τ into two, then taking the union of the coloring for the left-hand part and the

coloring for the right-hand part. We do this for every possible 2-way splitting and return

the best coloring found in this way. The procedure just outlined is performed for every

substring of length 1, then 2, and so on until |τ|. The score of a coloring is given by the 3-

tuple (cov,span,num), where cov is the number of colored terminals, num is the number

of colored boxes (i.e., labels), and span is size of the largest such colored box. The

112

113

comparison relation = simply gives preference to the score, in lexicographic order, with

highest cov, then highest span, then lowest num. Finally, REMOVE-SUBSUMES(G,C)

removes any element of the coloring C subsumed by another element.

114

1: function CYK-COLOR(G,τ,M)
2: let (N, ·, ·, ·) = G
3: let w = width of M
4: for i in [0,w) do
5: Ci,1←{(A, i, i+1) | A ∈ (Mi,1 ∩ N ∪ {τ[i]})}
6: Si,1← (1,1,1)
7: end for
8: for l in [2,w] do
9: for i in [0,w− l] do

10: COLOR-ONE(N,M, i, l,C,S)
11: end for
12: end for
13: return REMOVE-SUBSUMES(G,C0,w)
14: end function
15:
16: function COLOR-ONE(N,M, i, l,C,S)
17: let nts = Mi,l ∩ N
18: if |nts| > 0 then
19: Ci,l ←

{
(A, i, i+ l) | A ∈ nts

}
20: Si,l ← (l, l,1)
21: return
22: end if
23: best← /0
24: bestScore← (−∞,−∞,∞)
25: for k in [1, l) do
26: let (covL,spanL,numL) = Si,k
27: let (covR,spanR,numR) = Si+k,l−k
28: let score = (covL + covR,max(spanL,spanR),numL +numR)
29: if score = bestScore then
30: best← Ci,k ∪ Ci+k,l−k
31: bestScore← score
32: end if
33: end for
34: Ci,l ← best
35: Si,l ← bestScore
36: end function

Figure A.1. The CYK-COLOR algorithm.

Appendix B

Additional Patterns and Schemas

This appendix shows the CYK automata and production schemas used by Par-

simony’s pattern detection heuristics to detect the following three syntactic constructs:

(a) enclosed, undelimited lists; (b) unenclosed, delimited lists; and (c) unenclosed, un-

delimited lists. We show here only the automaton and corresponding schema. See

Section 4.3.4 for actual discussion of the algorithm.

0 1 4 2 3
NelemN

open

N
close

Nelem

Nelem

P•eulist =


•lhs→•open Afresh •close

Afresh→•elem

Afresh→•elem Afresh


Figure B.1. Enclosed and undelimited list.

115

116

0 2 1
Nelem

Nelem

Nelem

P•ulist =

{•lhs→•elem

•lhs→•elem •lhs

}

Figure B.2. Unenclosed and undelimited list.

0 1 2 Ndelim Nelem

Nelem

Nelem 3

P•dlist =

{•lhs→•elem

•lhs→•elem •delim •lhs

}

Figure B.3. Unenclosed and delimited list.

Bibliography

[1] Alfred V. Aho, Michael R. Garey, and Jeffrey D. Ullman. The transitive reduction
of a directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[2] Dana Angluin. Inference of reversible languages. J. ACM, 29(3):741–765, July
1982.

[3] Dana Angluin. Learning regular sets from queries and counterexamples. Informa-
tion and Computation, 75(2):87 – 106, 1987.

[4] Andrew W. Appel. Modern Compiler Implementation in ML: Basic Techniques.
Cambridge University Press, New York, NY, USA, 1997.

[5] Arvind Arasu, Surajit Chaudhuri, and Raghav Kaushik. Learning string transforma-
tions from examples. Proceedings of the VLDB Endowment, 2(1):514–525, August
2009.

[6] Martin F. Arlitt and Carey L. Williamson. Web server workload characteriza-
tion: The search for invariants. In Proceedings of the 1996 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’96, pages 126–137, New York, NY, USA, 1996. ACM.

[7] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. FlashRelate:
Extracting relational data from semi-structured spreadsheets using examples. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’15, pages 218–228, New York, NY, USA, 2015.
ACM.

[8] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Synthesizing program
input grammars. CoRR, abs/1608.01723, 2016.

[9] H. J. S. Basten. Tracking Down the Origins of Ambiguity in Context-Free Grammars,
pages 76–90. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[10] Hendrikus J. S. Basten and Jurgen J. Vinju. Parse Forest Diagnostics with Dr.
Ambiguity, pages 283–302. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

117

118

[11] Claus Brabrand, Robert Giegerich, and Anders Møller. Analyzing ambiguity of
context-free grammars. Science of Computer Programming, 75(3):176 – 191, 2010.

[12] census-postgres. https://github.com/leehach/census-postgres, 2014.

[13] Allen Cypher, editor. Watch What I Do – Programming by Demonstration. MIT
Press, Cambridge, MA, USA, 1993.

[14] Mark Daly, Mary F. Fernández, Kathleen Fisher, Yitzhak Mandelbaum, and David
Walker. LAUNCHPADS: A system for processing ad hoc data. In PLAN-X 2006
Informal Proceedings, Charleston, South Carolina, January 14, 2006, pages 90–91,
2006.

[15] Colin de la Higuera. A bibliographical study of grammatical inference. Pattern
Recogn., 38(9):1332–1348, September 2005.

[16] dk.brics.automaton. http://www.brics.dk/automaton/index.html, 2016.

[17] A. Dubey, S.K. Aggarwal, and P. Jalote. A technique for extracting keyword based
rules from a set of programs. In Software Maintenance and Reengineering, 2005.
CSMR 2005. Ninth European Conference on, pages 217–225, March 2005.

[18] Kathleen Fisher and Robert Gruber. PADS: A domain-specific language for pro-
cessing ad hoc data. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’05, pages 295–304,
New York, NY, USA, 2005. ACM.

[19] Kathleen Fisher, David Walker, and Kenny Q. Zhu. LearnPADS: Automatic tool
generation from ad hoc data. In Proceedings of the 2008 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’08, pages 1299–1302, New
York, NY, USA, 2008. ACM.

[20] Kathleen Fisher, David Walker, Kenny Q. Zhu, and Peter White. From dirt to
shovels: Fully automatic tool generation from ad hoc data. In Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’08, pages 421–434, New York, NY, USA, 2008. ACM.

[21] Bryan Ford. Parsing expression grammars: A recognition-based syntactic founda-
tion. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’04, pages 111–122, New York, NY, USA, 2004.
ACM.

[22] GNU Software Foundation. GNU Bison manual.

[23] E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

https://github.com/leehach/census-postgres
http://www.brics.dk/automaton/index.html

119

[24] grammars v4. https://github.com/antlr/grammars-v4, 2016.

[25] Robert Grimm. Better extensibility through modular syntax. In Proceedings
of the 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’06, pages 38–51, New York, NY, USA, 2006. ACM.

[26] Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques: A Practical Guide. Ellis
Horwood, Upper Saddle River, NJ, USA, 1990.

[27] Sumit Gulwani. Automating string processing in spreadsheets using input-output
examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’11, pages 317–330, New York,
NY, USA, 2011. ACM.

[28] Sumit Gulwani. Synthesis from examples: Interaction models and algorithms. In
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2012 14th
International Symposium on, pages 8–14, Sept 2012.

[29] William R. Harris and Sumit Gulwani. Spreadsheet table transformations from
examples. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 317–328, New York, NY,
USA, 2011. ACM.

[30] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determina-
tion of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions
on, 4(2):100–107, July 1968.

[31] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006.

[32] instaparse. https://github.com/Engleberg/instaparse, 2014.

[33] Chinawat Isradisaikul and Andrew C. Myers. Finding counterexamples from parsing
conflicts. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’15, pages 555–564, New York, NY,
USA, 2015. ACM.

[34] Mark Johnson. PCFG models of linguistic tree representations. Comput. Linguist.,
24(4):613–632, December 1998.

[35] Adrian Johnstone and Elizabeth Scott. Modelling GLL Parser Implementations,
pages 42–61. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[36] Lennart C.L. Kats, Eelco Visser, and Guido Wachsmuth. Pure and declarative syntax
definition: Paradise lost and regained. In Proceedings of the ACM International

https://github.com/antlr/grammars-v4
https://github.com/Engleberg/instaparse

120

Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’10, pages 918–932, New York, NY, USA, 2010. ACM.

[37] Emanuel Kitzelmann. Inductive programming: A survey of program synthesis
techniques. In Approaches and Applications of Inductive Programming, pages
50–73. Springer, Berlin, Heidelberg, Berlin, Heidelberg, September 2009.

[38] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering discipline for
grammarware. ACM Trans. Softw. Eng. Methodol., 14(3):331–380, July 2005.

[39] Paul Klint and Eelco Visser. Using filters for the disambiguation of context-free
grammars. In Proc. ASMICS Workshop on Parsing Theory, pages 1–20, 1994.

[40] Donald E. Knuth. On the translation of languages from left to right. Information
and Control, 8(6):607–639, December 1965.

[41] Tessa Lau, Pedro Domingos, and Daniel S. Weld. Learning programs from traces
using version space algebra. In Proceedings of the 2nd International Conference on
Knowledge Capture, K-CAP ’03, pages 36–43, New York, NY, USA, 2003. ACM.

[42] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. Programming
by demonstration using version space algebra. Mach. Learn., 53(1-2):111–156,
October 2003.

[43] Tessa A. Lau, Pedro Domingos, and Daniel S. Weld. Version space algebra and its
application to programming by demonstration. In Proceedings of the Seventeenth
International Conference on Machine Learning, ICML ’00, pages 527–534, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[44] Vu Le and Sumit Gulwani. FlashExtract: A framework for data extraction by
examples. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, pages 542–553, New York, NY,
USA, 2014. ACM.

[45] Lillian Lee. Learning of context-free languages: A survey of the literature. Technical
Report TR-12-96, Harvard University, 1996.

[46] Tao Lei, Fan Long, Regina Barzilay, and Martin C. Rinard. From natural language
specifications to program input parsers. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics, ACL 2013, 4-9 August 2013, Sofia,
Bulgaria, Volume 1: Long Papers, pages 1294–1303, 2013.

[47] Henry Lieberman. An example based environment for beginning programmers.
Instructional Science, 14(3):277–292, 1986.

[48] Henry Lieberman. Your Wish is My Command: Programming by Example. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

121

[49] Fan Long and Martin Rinard. Automatic patch generation by learning correct
code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16, pages 298–312, New York, NY,
USA, 2016. ACM.

[50] Scott McPeak and George C. Necula. Elkhound: A fast, practical GLR parser
generator. In Evelyn Duesterwald, editor, Compiler Construction, volume 2985
of Lecture Notes in Computer Science, pages 73–88. Springer Berlin Heidelberg,
2004.

[51] Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and
Adam Tauman Kalai. A machine learning framework for programming by example.
In Proceedings of the 30th International Conference on International Conference
on Machine Learning - Volume 28, ICML’13, pages I–187–I–195. JMLR.org, 2013.

[52] Marjan Mernik, Goran Gerlič, Viljem Žumer, and Barrett R. Bryant. Can a parser
be generated from examples? In Proceedings of the 2003 ACM Symposium on
Applied Computing, SAC ’03, pages 1063–1067, New York, NY, USA, 2003. ACM.

[53] Matthew Might and David Darais. Yacc is dead. CoRR, abs/1010.5023, 2010.

[54] Robert C. Miller and Brad A. Myers. Lightweight structured text processing. In
Proceedings of the Annual Conference on USENIX Annual Technical Conference,
ATEC ’99, pages 10–10, Berkeley, CA, USA, 1999. USENIX Association.

[55] Tom M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203 – 226,
1982.

[56] MonitorWare. Apache (unix) log samples. http://www.monitorware.com/en/
logsamples/apache.php, 2014.

[57] Robert C. Moore. Removing left recursion from context-free grammars. In Pro-
ceedings of the 1st North American Chapter of the Association for Computational
Linguistics Conference, NAACL 2000, pages 249–255, Stroudsburg, PA, USA,
2000. Association for Computational Linguistics.

[58] Jose Oncina and Pedro Garcia. Identifying regular languages in polynomial time. In
Advances in Structural and Syntactic Pattern Recognition, volume 5, pages 99–108.
World Scientific, 1992.

[59] Terence Parr and Kathleen Fisher. LL(*): The foundation of the ANTLR parser
generator. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 425–436, New York, NY,
USA, 2011. ACM.

http://www.monitorware.com/en/logsamples/apache.php
http://www.monitorware.com/en/logsamples/apache.php

122

[60] Georgios Petasis, Georgios Paliouras, Constantine D. Spyropoulos, and Constantine
Halatsis. eg-GRIDS: Context-free grammatical inference from positive examples
using genetic search. In Grammatical Inference: Algorithms and Applications:
7th International Colloquium, ICGI 2004, Athens, Greece, October 11-13, 2004.
Proceedings, pages 223–234. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[61] Oleksandr Polozov and Sumit Gulwani. FlashMeta: A framework for inductive
program synthesis. In Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, pages 107–126, New York, NY, USA, 2015. ACM.

[62] Yasubumi Sakakibara. Efficient learning of context-free grammars from positive
structural examples. Information and Computation, 97(1):23 – 60, 1992.

[63] Sylvain Schmitz. Conservative Ambiguity Detection in Context-Free Grammars,
pages 692–703. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[64] Elizabeth Scott and Adrian Johnstone. GLL parsing. Electronic Notes in Theoretical
Computer Science, 253(7):177 – 189, 2010. Proceedings of the Ninth Workshop on
Language Descriptions Tools and Applications (LDTA 2009).

[65] David E. Shaw, William R. Swartout, and C. Cordell Green. Inferring lisp programs
from examples. In Proceedings of the 4th International Joint Conference on
Artificial Intelligence - Volume 1, IJCAI’75, pages 260–267, San Francisco, CA,
USA, 1975. Morgan Kaufmann Publishers Inc.

[66] Rishabh Singh and Sumit Gulwani. Synthesizing number transformations from
input-output examples. In Proceedings of the 24th International Conference on
Computer Aided Verification, CAV’12, pages 634–651, Berlin, Heidelberg, 2012.
Springer-Verlag.

[67] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal Ebcioğlu.
Programming by sketching for bit-streaming programs. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’05, pages 281–294, New York, NY, USA, 2005. ACM.

[68] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program verification
to program synthesis. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’10, pages 313–326,
New York, NY, USA, 2010. ACM.

[69] Mikkel Thorup. Disambiguating grammars by exclusion of sub-parse trees. Acta
Informatica, 33(5):511–522, 1996.

[70] Masaru Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for
Practical Systems. Kluwer Academic Publishers, Norwell, MA, USA, 1985.

123

[71] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun.
Support vector machine learning for interdependent and structured output spaces.
In Proceedings of the Twenty-first International Conference on Machine Learning,
ICML ’04, pages 104–, New York, NY, USA, 2004. ACM.

[72] Enrique Vidal. Grammatical inference: An introductory survey. In Rafael C. Car-
rasco and Jose Oncina, editors, Grammatical Inference and Applications, volume
862 of Lecture Notes in Computer Science, pages 1–4. Springer Berlin Heidelberg,
1994.

[73] Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaudhuri. Synthe-
sizing transformations on hierarchically structured data. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’16, pages 508–521, New York, NY, USA, 2016. ACM.

[74] Kuat Yessenov, Shubham Tulsiani, Aditya Menon, Robert C. Miller, Sumit Gulwani,
Butler Lampson, and Adam Kalai. A colorful approach to text processing by
example. In Proceedings of the 26th Annual ACM Symposium on User Interface
Software and Technology, UIST ’13, pages 495–504, New York, NY, USA, 2013.
ACM.

[75] Daniel H. Younger. Recognition and parsing of context-free languages in time n3.
Information and Control, 10(2):189–208, 1967.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Outline of this work
	Organization
	Acknowledgements

	Preliminaries
	Lexical Analysis
	Regular Expressions
	Lexers

	Context-Free Grammars
	String Indexing
	Derivations
	Sentential Forms
	Parse Trees
	Parsers

	Disambiguating Filters
	Associativity Filters
	Priority Filters
	Consistency
	Filter Specification Syntax

	Acknowledgements

	Parsify
	Overview
	User Interface Overview
	Basic Inference
	Infix Expressions
	Function Definitions
	Function Calls
	Challenges

	Algorithm
	Session State
	Operations
	Draw
	Negate
	Annotate
	Generalize
	Resolve

	Evaluation
	Versatility
	Usability
	Best Practices

	Acknowledgements

	Parsimony
	Overview
	Constructing the Lexer
	Constructing the Parser

	Lexer Synthesis
	A Data Structure for Sets of Regular Expressions
	Regular Expression Inference via r-dag Queries
	Example of Token Inference

	Parser Synthesis
	Preliminaries: CYK Parsing Algorithm
	Parser Synthesis Constraint Systems
	A Data Structure for Sets of Candidate Productions
	Parser Synthesis via CYK Automata

	Implementation
	Backend Design
	Frontend Design

	Evaluation
	Hypotheses
	Participants
	Interface Differences
	Methodology
	Quantitative Results
	Qualitative Results

	Acknowledgements

	Related Work
	Program Synthesis
	Grammatical Inference
	Parsing
	Acknowledgements

	Conclusion
	CYK-based Coloring
	Additional Patterns and Schemas
	Bibliography

